ﻻ يوجد ملخص باللغة العربية
Transport of intracellular cargo is often mediated by teams of molecular motors that function in a chaotic environment and varying conditions. We show that the motors have unique steady state behavior which enables transport modalities that are robust. Under reduced ATP concentrations, multi-motor configurations are preferred over single motors. Higher load force drives motors to cluster, but very high loads compel them to separate in a manner that promotes immediate cargo movement once the load reduces. These inferences, backed by analytical guarantees, provide unique insights into the coordination strategies adopted by motors.
Intracellular transport is an essential function in eucaryotic cells, facilitated by motor proteins - proteins converting chemical energy into kinetic energy. It is known that motor proteins work in teams enabling unidirectional and bidirectional tra
A discrete-state model of the F1-ATPase molecular motor is developed which describes not only the dependences of the rotation and ATP consumption rates on the chemical concentrations of ATP, ADP, and inorganic phosphate, but also on mechanical contro
We have developed a novel method to evaluate the potential profile of a molecular motor at each chemical state from only the probes trajectory and applied it to a rotary molecular motor F$_1$-ATPase. By using this method, we could also obtain the inf
Generation of mechanical oscillation is ubiquitous to wide variety of intracellular processes. We show that catchbonding behaviour of motor proteins provides a generic mechanism of generating spontaneous oscillations in motor-cytoskeletal filament co
In cells and in vitro assays the number of motor proteins involved in biological transport processes is far from being unlimited. The cytoskeletal binding sites are in contact with the same finite reservoir of motors (either the cytosol or the flow c