ترغب بنشر مسار تعليمي؟ اضغط هنا

Charge-to-Spin Interconversion in Low-Symmetry Topological Materials

349   0   0.0 ( 0 )
 نشر من قبل Marc Vila Tusell
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The spin polarization induced by the spin Hall effect (SHE) in thin films typically points out of the plane. This is rooted not in a fundamental constraint but on the specific symmetries of traditionally studied systems. We theoretically show that the reduced symmetry of strong spin-orbit coupling materials such as ${rm MoTe}_2$ or ${rm WTe}_2$ enables new forms of intrinsic SHE that produce large and robust in-plane spin polarizations. Through quantum transport calculations on realistic device geometries with disorder, we show that the charge-to-spin interconversion efficiency can reach $theta_{xy} approx 80$% and is gate tunable. The numerically extracted spin diffusion lengths ($lambda_s$) are long and yield large values of the figure of merit $lambda_stheta_{xy}sim 8text{--}10$ nm, largely superior to conventional SHE materials. These findings vividly emphasize how crystal symmetry governs the intrinsic SHE, and how it can be exploited to broaden the range and efficiency of spintronic functionalities.



قيم البحث

اقرأ أيضاً

Quantum oxide materials possess a vast range of properties stemming from the interplay between the lattice, charge, spin and orbital degrees of freedom, in which electron correlations often play an important role. Historically, the spin-orbit couplin g was rarely a dominant energy scale in oxides. It however recently came to the forefront, unleashing various exotic phenomena connected with real and reciprocal-space topology that may be harnessed in spintronics. In this article, we review the recent advances in the new field of oxide spin-orbitronics with a special focus on spin-charge interconversion from the direct and inverse spin Hall and Edelstein effects, and on the generation and observation of topological spin textures such as skyrmions. We highlight the control of spin-orbit-driven effects by ferroelectricity and give perspectives for the field.
Oxide interfaces exhibit a broad range of physical effects stemming from broken inversion symmetry. In particular, they can display non-reciprocal phenomena when time reversal symmetry is also broken, e.g., by the application of a magnetic field. Exa mples include the direct and inverse Edelstein effects (DEE, IEE) that allow the interconversion between spin currents and charge currents. The DEE and IEE have been investigated in interfaces based on the perovskite SrTiO$_3$ (STO), albeit in separate studies focusing on one or the other. The demonstration of these effects remains mostly elusive in other oxide interface systems despite their blossoming in the last decade. Here, we report the observation of both the DEE and IEE in a new interfacial two-dimensional electron gas (2DEG) based on the perovskite oxide KTaO$_3$. We generate 2DEGs by the simple deposition of Al metal onto KTaO$_3$ single crystals, characterize them by angle-resolved photoemission spectroscopy and magnetotransport, and demonstrate the DEE through unidirectional magnetoresistance and the IEE by spin-pumping experiments. We compare the spin-charge interconversion efficiency with that of STO-based interfaces, relate it to the 2DEG electronic structure, and give perspectives for the implementation of KTaO$_3$ 2DEGs into spin-orbitronic devices.
We measure spin-orbit torques (SOTs) in a unique model system of all-epitaxial ferrite/Pt bilayers to gain insights into charge-spin interconversion in Pt. With negligible electronic conduction in the insulating ferrite, the crystalline Pt film acts as the sole source of charge-to-spin conversion. A small field-like SOT independent of Pt thickness suggests a weak Rashba-Edelstein effect at the ferrite/Pt interface. By contrast, we observe a sizable damping-like SOT that depends on the Pt thickness, from which we deduce the dominance of an extrinsic spin-Hall effect (skew scattering) and Dyakonov-Perel spin relaxation in the crystalline Pt film. Furthermore, our results point to a large internal spin-Hall ratio of $approx$0.8 in epitaxial Pt. Our experimental work takes an essential step towards understanding the mechanisms of charge-spin interconversion and SOTs in Pt-based heterostructures, which are crucial for power-efficient spintronic devices.
Efficient and versatile spin-to-charge current conversion is crucial for the development of spintronic applications, which strongly rely on the ability to electrically generate and detect spin currents. In this context, the spin Hall effect has been widely studied in heavy metals with strong spin-orbit coupling. While the high crystal symmetry in these materials limits the conversion to the orthogonal configuration, unusual configurations are expected in low symmetry transition metal dichalcogenide semimetals, which could add flexibility to the electrical injection and detection of pure spin currents. Here, we report the observation of spin-to-charge conversion in MoTe$_2$ flakes, which are stacked in graphene lateral spin valves. We detect two distinct contributions arising from the conversion of two different spin orientations. In addition to the conventional conversion where the spin polarization is orthogonal to the charge current, we also detect a conversion where the spin polarization and the charge current are parallel. Both contributions, which could arise either from bulk spin Hall effect or surface Edelstein effect, show large efficiencies comparable to the best spin Hall metals and topological insulators. Our finding enables the simultaneous conversion of spin currents with any in-plane spin polarization in one single experimental configuration.
Although the richness of spatial symmetries has led to a rapidly expanding inventory of possible topological crystalline (TC) phases of electrons, physical realizations have been slow to materialize due to the practical difficulty to ascertaining ban d topology in realistic calculations. Here, we integrate the recently established theory of symmetry indicators of band topology into first-principle band-structure calculations, and test it on a databases of previously synthesized crystals. The combined algorithm is found to efficiently unearth topological materials and predict topological properties like protected surface states. On applying our algorithm to just 8 out of the 230 space groups, we already discover numerous materials candidates displaying a diversity of topological phenomena, which are simultaneously captured in a single sweep. The list includes recently proposed classes of TC insulators that had no previous materials realization as well as other topological phases, including: (i) a screw-protected 3D TC insulator, b{eta}-MoTe2, with gapped surfaces except for 1D helical hinge states; (ii) a rotation-protected TC insulator BiBr with coexisting surface Dirac cones and hinge states; (iii) non-centrosymmetric Z2 topological insulators undetectable using the well-established parity criterion, AgXO (X=Na,K,Rb); (iv) a Dirac semimetal MgBi2O6; (v) a Dirac nodal-line semimetal AgF2; and (vi) a metal with three-fold degenerate band crossing near the Fermi energy, AuLiMgSn. Our work showcases how the recent theoretical insights on the fundamentals of band structures can aid in the practical goal of discovering new topological materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا