ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultra-high spatial resolution BOLD fMRI in humans using combined segmented-accelerated VFA-FLEET with a recursive RF pulse design

137   0   0.0 ( 0 )
 نشر من قبل Avery Berman
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Purpose To alleviate the spatial encoding limitations of single-shot EPI by developing multi-shot segmented EPI for ultra-high-resolution fMRI with reduced ghosting artifacts from subject motion and respiration. Methods Segmented EPI can reduce readout duration and reduce acceleration factors, however, the time elapsed between segment acquisitions (on the order of seconds) can result in intermittent ghosting, limiting its use for fMRI. Here, FLEET segment ordering--where segments are looped over before slices--was combined with a variable flip angle progression (VFA-FLEET) to improve inter-segment fidelity and maximize signal for fMRI. Scaling a sinc pulses flip angle for each segment (VFA-FLEET-Sinc) produced inconsistent slice profiles and ghosting, therefore, a recursive Shinnar-Le Roux (SLR) RF pulse design was developed (VFA-FLEET-SLR) to generate unique pulses for every segment that together produce consistent slice profiles and signals. Results The temporal stability of VFA-FLEET-SLR was compared against conventional-segmented EPI and VFA-FLEET-Sinc at 3 T and 7 T. VFA-FLEET-SLR showed reductions in both intermittent and stable ghosting compared to conventional-segmented and VFA-FLEET-Sinc, resulting in improved image quality with a minor trade-off in temporal SNR. Combining VFA-FLEET-SLR with acceleration, we achieved a 0.6-mm isotropic acquisition at 7 T--without zoomed imaging or partial Fourier--demonstrating reliable detection of BOLD responses to a visual stimulus. To counteract the increased repetition time from segmentation, simultaneous multi-slice VFA-FLEET-SLR was demonstrated using RF-encoded controlled aliasing. Conclusions VFA-FLEET with a recursive RF pulse design supports acquisitions with low levels of artifact and spatial blur, enabling fMRI at previously inaccessible spatial resolutions with a full-brain field of view.



قيم البحث

اقرأ أيضاً

Spin-echo functional MRI (SE-fMRI) has the potential to improve spatial specificity when compared to gradient-echo fMRI. However, high spatiotemporal resolution SE-fMRI with large slice-coverage is challenging as SE-fMRI requires a long echo time (TE ) to generate blood oxygenation level-dependent (BOLD) contrast, leading to long repetition times (TR). The aim of this work is to develop an acquisition method that enhances the slice-coverage of SE-fMRI at high spatiotemporal resolution. An acquisition scheme was developed entitled Multisection Excitation by Simultaneous Spin-echo Interleaving (MESSI) with complex-encoded generalized SLIce Dithered Enhanced Resolution (cgSlider). MESSI utilizes the dead-time during the long TE by interleaving the excitation and readout of two slices to enable 2x slice-acceleration, while cgSlider utilizes the stable temporal background phase in SE-fMRI to encode and decode two adjacent slices simultaneously with a phase-constrained reconstruction method. The proposed cgSlider-MESSI was also combined with Simultaneous Multi-Slice (SMS) to achieve further slice-acceleration. This combined approach was used to achieve 1.5mm isotropic whole-brain SE-fMRI with a temporal resolution of 1.5s and was evaluated using sensory stimulation and breath-hold tasks at 3T. Compared to conventional SE-SMS, cgSlider-MESSI-SMS provides four-fold increase in slice-coverage for the same TR, with comparable temporal signal-to-noise ratio. Corresponding fMRI activation from cgSlider-MESSI-SMS for both fMRI tasks were consistent with those from conventional SE-SMS. Overall, cgSlider-MESSI-SMS achieved a 32x encoding-acceleration by combining RinplanexMBxcgSliderxMESSI=4x2x2x2. High-quality, high-resolution whole-brain SE-fMRI was acquired at a short TR using cgSlider-MESSI-SMS.
Purpose: To develop a respiratory-resolved motion-compensation method for free-breathing, high-resolution coronary magnetic resonance angiography using a 3D cones trajectory. Methods: To achieve respiratory-resolved 0.98 mm resolution images in a c linically relevant scan time, we undersample the imaging data with a variable-density 3D cones trajectory. For retrospective motion compensation, translational estimates from 3D image-based navigators (3D iNAVs) are used to bin the imaging data into four phases from end-expiration to end-inspiration. To ensure pseudo-random undersampling within each respiratory phase, we devise a phyllotaxis readout ordering scheme mindful of eddy current artifacts in steady state free precession imaging. Following binning, residual 3D translational motion within each phase is computed using the 3D iNAVs and corrected for in the imaging data. The noise-like aliasing characteristic of the combined phyllotaxis and cones sampling pattern is leveraged in a compressed sensing reconstruction with spatial and temporal regularization to reduce aliasing in each of the respiratory phases. Results: In a volunteer and 5 patients, respiratory motion compensation using the proposed method yields improved image quality compared to non-respiratory-resolved approaches with no motion correction and with 3D translational correction. Qualitative assessment by two cardiologists indicates the superior sharpness of coronary segments reconstructed with the proposed method (P < 0.01). Conclusion: The proposed method better mitigates motion artifacts in free-breathing, high-resolution coronary angiography exams compared to translational correction.
Here we propose double-coil setup to allow high signal-to-noise ratio broad-range heteronuclear magnetic resonance imaging experiments: two independent coils, one of them tuned to $^{1}$H frequency to perform anatomical $^{1}$H imaging, and another o ne, metamaterial-inspired coil, tuned to the X-nucleus frequency. In this work our goal was to design a broad-range X-nuclei coil to cover $^{2}$H, $^{11}$B, $^{13}$C, $^{23}$Na, $^{7}$Li and $^{31}$P nuclear magnetic resonance frequencies, and to combine it with $^{1}$H coil in one setup. The system was designed for 11.7 T scanner, i.e., with 76-203 MHz frequency tuning range for the X-nuclei and tuned to 500 MHz for the proton coil. X-nuclei coil operates via excitation of the fundamental eigenmode of an array of parallel non-magnetic wires. The excitation of the array is provided via non-resonant feeding loop inductively coupled to the resonator. In order to tune the X-coil over such a wide range, both structural capacitance and inductance of the coil were made variable; narrow range tuning of the $^{1}$H coil is achieved via conventional tuning-matching circuit. Here, the design principle and setup tunability were investigated in simulations and experimentally.
Purpose: B1+ and T1 corrections and dynamic multi-coil shimming approaches were proposed to improve the fidelity of high isotropic resolution Generalized slice dithered enhanced resolution (gSlider) diffusion imaging. Methods: An extended reconstruct ion incorporating B1+ inhomogeneity and T1 recovery information was developed to mitigate slab-boundary artifacts in short-TR gSlider acquisitions. Slab-by-slab dynamic B0 shimming using a multi-coil integrated {Delta}B0/Rx shim-array, and high in-plane acceleration (Rinplane=4) achieved with virtual-coil GRAPPA were also incorporated into a 1 mm isotropic resolution gSlider acquisition/reconstruction framework to achieve an 8-11 fold reduction in geometric distortion compared to single-shot EPI. Results: The slab-boundary artifacts were alleviated by the proposed B1+ and T1 corrections compared to the standard gSlider reconstruction pipeline for short-TR acquisitions. Dynamic shimming provided >50% reduction in geometric distortion compared to conventional global 2nd order shimming. 1 mm isotropic resolution diffusion data show that the typically problematic temporal and frontal lobes of the brain can be imaged with high geometric fidelity using dynamic shimming. Conclusions: The proposed B1+ and T1 corrections and local-field control substantially improved the fidelity of high isotropic resolution diffusion imaging, with reduced slab-boundary artifacts and geometric distortion compared to conventional gSlider acquisition and reconstruction. This enabled high-fidelity whole-brain 1 mm isotropic diffusion imaging with 64 diffusion-directions in 20 minutes using a 3T clinical scanner.
With the recent introduction of the MR-LINAC, an MR-scanner combined with a radiotherapy LINAC, MR-based motion estimation has become of increasing interest to (retrospectively) characterize tumor and organs-at-risk motion during radiotherapy. To thi s extent, we introduce low-rank MR-MOTUS, a framework to retrospectively reconstruct time-resolved non-rigid 3D+t motion-fields from a single low-resolution reference image and prospectively undersampled k-space data acquired during motion. Low-rank MR-MOTUS exploits spatio-temporal correlations in internal body motion with a low-rank motion model, and inverts a signal model that relates motion-fields directly to a reference image and k-space data. The low-rank model reduces the degrees-of-freedom, memory consumption and reconstruction times by assuming a factorization of space-time motion-fields in spatial and temporal components. Low-rank MR-MOTUS was employed to estimate motion in 2D/3D abdominothoracic scans and 3D head scans. Data were acquired using golden-ratio radial readouts. Reconstructed 2D and 3D respiratory motion-fields were respectively validated against time-resolved and respiratory-resolved image reconstructions, and the head motion against static image reconstructions from fully-sampled data acquired right before and right after the motion. Results show that 2D+t respiratory motion can be estimated retrospectively at 40.8 motion-fields-per-second, 3D+t respiratory motion at 7.6 motion-fields-per-second and 3D+t head-neck motion at 9.3 motion-fields-per-second. The validations show good consistency with image reconstructions. The proposed framework can estimate time-resolved non-rigid 3D motion-fields, which allows to characterize drifts and intra and inter-cycle patterns in breathing motion during radiotherapy, and could form the basis for real-time MR-guided radiotherapy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا