ﻻ يوجد ملخص باللغة العربية
Spin-echo functional MRI (SE-fMRI) has the potential to improve spatial specificity when compared to gradient-echo fMRI. However, high spatiotemporal resolution SE-fMRI with large slice-coverage is challenging as SE-fMRI requires a long echo time (TE) to generate blood oxygenation level-dependent (BOLD) contrast, leading to long repetition times (TR). The aim of this work is to develop an acquisition method that enhances the slice-coverage of SE-fMRI at high spatiotemporal resolution. An acquisition scheme was developed entitled Multisection Excitation by Simultaneous Spin-echo Interleaving (MESSI) with complex-encoded generalized SLIce Dithered Enhanced Resolution (cgSlider). MESSI utilizes the dead-time during the long TE by interleaving the excitation and readout of two slices to enable 2x slice-acceleration, while cgSlider utilizes the stable temporal background phase in SE-fMRI to encode and decode two adjacent slices simultaneously with a phase-constrained reconstruction method. The proposed cgSlider-MESSI was also combined with Simultaneous Multi-Slice (SMS) to achieve further slice-acceleration. This combined approach was used to achieve 1.5mm isotropic whole-brain SE-fMRI with a temporal resolution of 1.5s and was evaluated using sensory stimulation and breath-hold tasks at 3T. Compared to conventional SE-SMS, cgSlider-MESSI-SMS provides four-fold increase in slice-coverage for the same TR, with comparable temporal signal-to-noise ratio. Corresponding fMRI activation from cgSlider-MESSI-SMS for both fMRI tasks were consistent with those from conventional SE-SMS. Overall, cgSlider-MESSI-SMS achieved a 32x encoding-acceleration by combining RinplanexMBxcgSliderxMESSI=4x2x2x2. High-quality, high-resolution whole-brain SE-fMRI was acquired at a short TR using cgSlider-MESSI-SMS.
Purpose: To develop a single-shot multi-slice T1 mapping method by combing simultaneous multi-slice (SMS) excitations, single-shot inversion-recovery (IR) radial fast low-angle shot (FLASH) and a nonlinear model-based reconstruction method. Methods:
We introduce wave encoded acquisition and reconstruction techniques for highly accelerated echo planar imaging (EPI) with reduced g-factor penalty and image artifacts. Wave-EPI involves playing sinusoidal gradients during the EPI readout while employ
Purpose: To demonstrate an ultrashort echo time magnetic resonance fingerprinting (UTE-MRF) method that can simultaneously quantify tissue relaxometries for muscle and bone in musculoskeletal systems and tissue components in brain and therefore can s
Multi-shot echo planar imaging (msEPI) is a promising approach to achieve high in-plane resolution with high sampling efficiency and low T2* blurring. However, due to the geometric distortion, shot-to-shot phase variations and potential subject motio
Purpose: The development of a calibrationless parallel imaging method for accelerated simultaneous multi-slice (SMS) MRI based on Regularized Nonlinear Inversion (NLINV), evaluated using Cartesian and radial FLASH. Theory and Methods: NLINV is a para