ترغب بنشر مسار تعليمي؟ اضغط هنا

The Effect of Bars on the Ionized ISM: Optical Emission Lines from Milky Way Analogs

47   0   0.0 ( 0 )
 نشر من قبل Dhanesh Krishnarao
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Gas interior to the bar of the Milky Way has recently been shown as the closest example of a Low Ionization (Nuclear) Emission Region--LI(N)ER--in the universe. To better understand the nature of this gas, a sample of face-on galaxies with integral field spectroscopy are used to study the ionized gas conditions of 240 barred and 250 nonbarred galaxies, focusing on those that are most similar to the Milky Way. Strong optical line emission of $[NII]$ $lambda 6584$, H$alpha$, $[OIII]$ $lambda 5007$, and H$beta$ are used to diagnose the dominant ionization mechanisms of gas across galaxies and the Galaxy via Baldwin-Phillips-Terlevich (BPT) Diagrams. Barred galaxies show a strong suppression of star formation and an increase in composite and LI(N)ER like spectra in their inner regions when compared with similar nonbarred counterparts. This effect is lessened in galaxies of very low ($log_{10}(M_star/M_odot) lesssim 10.4$) or very high ($log_{10}(M_star/M_odot) gtrsim 11.1$) total stellar mass. Bar masks from Galaxy Zoo:3D show the bars non-axisymmetric effect on the ionized gas and help predict the face-on distribution of ionized gas conditions near the bar of the Milky Way.

قيم البحث

اقرأ أيضاً

41 - M. J. Reid , T. M. Dame 2016
The circular rotation speed of the Milky Way at the solar radius, Theta_o, has been estimated to be 220 km/s by fitting the maximum velocity of HI emission as a function of Galactic longitude. This result is in tension with a recent estimate of Theta _o=240 km/s, based on VLBI parallaxes and proper motions from the BeSSeL and VERA surveys for large numbers of high-mass star forming regions across the Milky Way. We find that the rotation curve best fitted to the VLBI data is slightly curved, and that this curvature results in a biased estimate of Theta_o from the HI data when a flat rotation curve is assumed. This relieves the tension between the methods and favors Theta_o=240 km/s.
85 - N. Lehner , W.F. Zech , J.C. Howk 2010
The cooling transition temperature gas in the interstellar medium (ISM), traced by the high ions, Si IV, C IV, N V, and O VI, helps to constrain the flow of energy from the hot ISM with T >10^6 K to the warm ISM with T< 2x10^4 K. We investigate the p roperties of this gas along the lines of sight to 38 stars in the Milky Way disk using 1.5-2.7 km/s resolution spectra of Si IV, C IV, and N V absorption from the Space Telescope Imaging Spectrograph (STIS), and 15 km/s resolution spectra of O VI absorption from the Far Ultraviolet Spectroscopic Explorer (FUSE). The absorption by Si IV and C IV exhibits broad and narrow components while only broad components are seen in N V and O VI. The narrow components imply gas with T<7x10^4 K and trace two distinct types of gas. The strong, saturated, and narrow Si IV and C IV components trace the gas associated with the vicinities of O-type stars and their supershells. The weaker narrow Si IV and C IV components trace gas in the general ISM that is photoionized by the EUV radiation from cooling hot gas or has radiatively cooled in a non-equilibrium manner from the transition temperature phase, but rarely the warm ionized medium (WIM) probed by Al III. The broad Si IV, C IV, N V, and O VI components trace collisionally ionized gas that is very likely undergoing a cooling transition from the hot ISM to the warm ISM. The cooling process possibly provides the regulation mechanism that produces N(C IV)/N(Si IV) = 3.9 +/- 1.9. The cooling process also produces absorption lines where the median and mean values of the line widths increase with the energy required to create the ion.
We address the spatial scale, ionization structure, mass and metal content of gas at the Milky Way disk-halo interface detected as absorption in the foreground of seven closely-spaced, high-latitude halo blue horizontal branch stars (BHBs) with heigh ts z = 3 - 14 kpc. We detect transitions that trace multiple ionization states (e.g. CaII, FeII, SiIV, CIV) with column densities that remain constant with height from the disk, indicating that the gas most likely lies within z < 3.4 kpc. The intermediate ionization state gas traced by CIV and SiIV is strongly correlated over the full range of transverse separations probed by our sightlines, indicating large, coherent structures greater than 1 kpc in size. The low ionization state material traced by CaII and FeII does not exhibit a correlation with either N$_{rm HI}$ or transverse separation, implying cloudlets or clumpiness on scales less than 10 pc. We find that the observed ratio log(N_SiIV/ N_CIV), with a median value of -0.69+/-0.04, is sensitive to the total carbon content of the ionized gas under the assumption of either photoionization or collisional ionization. The only self-consistent solution for photoionized gas requires that Si be depleted onto dust by 0.35 dex relative to the solar Si/C ratio, similar to the level of Si depletion in DLAs and in the Milky Way ISM. The allowed range of values for the areal mass infall rate of warm, ionized gas at the disk-halo interface is 0.0003 < dM_gas / dtdA [M_sun kpc^-2 yr^-] < 0.006. Our data support a physical scenario in which the Milky Way is fed by complex, multiphase processes at its disk-halo interface that involve kpc-scale ionized envelopes or streams containing pc-scale, cool clumps.
We present all-sky maps of two major FUV cooling lines, C IV and O VI, of highly ionized gas to investigate the nature of the transition-temperature gas. From the extinction-corrected line intensities of C IV and O VI, we calculated the gas temperatu re and the emission measure of the transition-temperature gas assuming isothermal plasma in the collisional ionization equilibrium. The gas temperature was found to be more or less uniform throughout the Galaxy with a value of (1.89 $pm$ 0.06) $times$ $10^5$ K. The emission measure of the transition-temperature gas is described well by a disk-like model in which the scale height of the electron density is $z_0=6_{-2}^{+3}$ kpc. The total mass of the transition-temperature gas is estimated to be approximately $6.4_{-2.8}^{+5.2}times10^9 M_{bigodot}$. We also calculated the volume-filling fraction of the transition-temperature gas, which was estimated to be $f=0.26pm0.09$, and varies from $fsim0.37$ in the inner Galaxy to $fsim0.18$ in the outer Galaxy. The spatial distribution of C IV and O VI cannot be explained by a simple supernova remnant model or a three-phase model. The combined effects of supernova remnants and turbulent mixing layers can explain the intensity ratio of C IV and O VI. Thermal conduction front models and high-velocity cloud models are also consistent with our observation.
Both the three-dimensional density of red clump giants and the gas kinematics in the inner Galaxy indicate that the pattern speed of the Galactic bar could be much lower than previously estimated. Here, we show that such slow bar models are unable to reproduce the bimodality observed in local stellar velocity space. We do so by computing the response of stars in the Solar neighbourhood to the gravitational potential of slow and fast bars, in terms of their perturbed distribution function in action-angle space up to second order, as well as by identifying resonantly trapped orbits. We also check that the bimodality is unlikely to be produced through perturbations from spiral arms, and conclude that, contrary to gas kinematics, local stellar kinematics still favour a fast bar in the Milky Way, with a pattern speed of the order of almost twice (and no less than 1.8 times) the circular frequency at the Suns position. This leaves open the question of the nature of the long flat extension of the bar in the Milky Way.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا