ترغب بنشر مسار تعليمي؟ اضغط هنا

Staying away from the bar: the local dynamical signature of slow and fast bars in the Milky Way

37   0   0.0 ( 0 )
 نشر من قبل Giacomo Monari
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Both the three-dimensional density of red clump giants and the gas kinematics in the inner Galaxy indicate that the pattern speed of the Galactic bar could be much lower than previously estimated. Here, we show that such slow bar models are unable to reproduce the bimodality observed in local stellar velocity space. We do so by computing the response of stars in the Solar neighbourhood to the gravitational potential of slow and fast bars, in terms of their perturbed distribution function in action-angle space up to second order, as well as by identifying resonantly trapped orbits. We also check that the bimodality is unlikely to be produced through perturbations from spiral arms, and conclude that, contrary to gas kinematics, local stellar kinematics still favour a fast bar in the Milky Way, with a pattern speed of the order of almost twice (and no less than 1.8 times) the circular frequency at the Suns position. This leaves open the question of the nature of the long flat extension of the bar in the Milky Way.

قيم البحث

اقرأ أيضاً

We examine the dynamical effects on disk stars of a long bar in the Milky Way by inserting a triaxial rotating bar into an axisymmetric disk+bulge+dark halo potential and integrating 3-D orbits of 104 tracer stars over a period of 2 Gyr. The long bar has been detected via clump giants in the IR by Lopez-Corredoira et al. (2007), and is estimated to have semi-major axes of (3.9 : 0.6 : 0.1) kpc and a mass of 6 10^9 Msun. We find such a structure has a slight impact on the inner disk-system, moving tracers near to the bar into the bar-region, as well as into the bulge. These effects are under continuing study.
We use a sample of 938 red clump giant stars located in the direction of the galactic long bar to study the chemistry of Milky Way bar stars. Kinematically separating stars on bar orbits from stars with inner disc orbits, we find that stars on bar-li ke orbits are more metal rich with a mean iron abundance of <[Fe/H]>=+0.30 compared to <[Fe/H]>=+0.03 for the inner disc. Spatially selecting bar stars is complicated by a strong vertical metallicity gradient of -1.1dex/kpc, but we find the metallicity distribution varies in a manner consistent with our orbital selection. Our results have two possible interpretations. The first is that the most metal rich stars in the inner Galaxy pre-existed the bar, but were kinematically cold at the time of bar formation and therefore more easily captured onto bar orbits when the bar formed. The second is that the most metal rich stars formed after the bar, either directly onto the bar following orbits or were captured by the bar after their formation.
We compare distance resolved, absolute proper motions in the Milky Way bar/bulge region to a grid of made-to-measure dynamical models with well defined pattern speeds. The data are obtained by combining the relative VVV Infrared Astrometric Catalog v 1 proper motions with the Gaia DR2 absolute reference frame. We undertake a comprehensive analysis of the various errors in our comparison, from both the data and the models, and allow for additional, unknown, contributions by using an outlier-tolerant likelihood function to evaluate the best fitting model. We quantify systematic effects such as the region of data included in the comparison, with or without possible overlap from spiral arms, and the choice of synthetic luminosity function and bar angle used to predict the data from the models. Resulting variations in the best-fit parameters are included in the final error budget. We measure the bar pattern speed to be Omega_b=35.4+-0.9 km/s/kpc and the azimuthal solar velocity to be V_phi_sun= 251.4+-1.7 km/s. These values, when combined with recent measurements of the Galactic rotation curve, yield the distance of corotation, 6.3 < R_(CR) [kpc] < 6.8, the outer Lindblad resonance (OLR), 10.5 < R_(OLR) [kpc] < 11.5, and the higher order, m=4, OLR, 8.5 < R_(OLR_4) [kpc] < 9.0. The measured low pattern speed provides strong evidence for the long-slow bar scenario.
83 - Juntai Shen 2020
The Milky Way is a spiral galaxy with the Schechter characteristic luminosity $L_*$, thus an important anchor point of the Hubble sequence of all spiral galaxies. Yet the true appearance of the Milky Way has remained elusive for centuries. We review the current best understanding of the structure and kinematics of our home galaxy, and present an updated scientifically accurate visualization of the Milky Way structure with almost all components of the spiral arms, along with the COBE image in the solar perspective. The Milky Way contains a strong bar, four major spiral arms, and an additional arm segment (the Local arm) that may be longer than previously thought. The Galactic boxy bulge that we observe is mostly the peanut-shaped central bar viewed nearly end-on with a bar angle of 25-30 degrees from the Sun-Galactic center line. The bar transitions smoothly from a central peanut-shaped structure to an extended thin part that ends around R ~ 5 kpc. The Galactic bulge/bar contains ~ 30-40% of the total stellar mass in the Galaxy. Dynamical modelling of both the stellar and gas kinematics yields a bar pattern rotation speed of ~ 35-40 km/s/kpc, corresponding to a bar rotation period of ~ 160-180 Myr. From a galaxy formation point of view, our Milky Way is probably a pure-disk galaxy with little room for a significant merger-made, classical spheroidal bulge, and we give a number of reasons why this is the case.
Gas interior to the bar of the Milky Way has recently been shown as the closest example of a Low Ionization (Nuclear) Emission Region--LI(N)ER--in the universe. To better understand the nature of this gas, a sample of face-on galaxies with integral f ield spectroscopy are used to study the ionized gas conditions of 240 barred and 250 nonbarred galaxies, focusing on those that are most similar to the Milky Way. Strong optical line emission of $[NII]$ $lambda 6584$, H$alpha$, $[OIII]$ $lambda 5007$, and H$beta$ are used to diagnose the dominant ionization mechanisms of gas across galaxies and the Galaxy via Baldwin-Phillips-Terlevich (BPT) Diagrams. Barred galaxies show a strong suppression of star formation and an increase in composite and LI(N)ER like spectra in their inner regions when compared with similar nonbarred counterparts. This effect is lessened in galaxies of very low ($log_{10}(M_star/M_odot) lesssim 10.4$) or very high ($log_{10}(M_star/M_odot) gtrsim 11.1$) total stellar mass. Bar masks from Galaxy Zoo:3D show the bars non-axisymmetric effect on the ionized gas and help predict the face-on distribution of ionized gas conditions near the bar of the Milky Way.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا