ترغب بنشر مسار تعليمي؟ اضغط هنا

Expected Eligibility Traces

106   0   0.0 ( 0 )
 نشر من قبل Hado van Hasselt
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The question of how to determine which states and actions are responsible for a certain outcome is known as the credit assignment problem and remains a central research question in reinforcement learning and artificial intelligence. Eligibility traces enable efficient credit assignment to the recent sequence of states and actions experienced by the agent, but not to counterfactual sequences that could also have led to the current state. In this work, we introduce expected eligibility traces. Expected traces allow, with a single update, to update states and actions that could have preceded the current state, even if they did not do so on this occasion. We discuss when expected traces provide benefits over classic (instantaneous) traces in temporal-difference learning, and show that sometimes substantial improvements can be attained. We provide a way to smoothly interpolate between instantaneous and expected traces by a mechanism similar to bootstrapping, which ensures that the resulting algorithm is a strict generalisation of TD($lambda$). Finally, we discuss possible extensions and connections to related ideas, such as successor features.



قيم البحث

اقرأ أيضاً

96 - Mingde Zhao 2020
Temporal-Difference (TD) learning is a standard and very successful reinforcement learning approach, at the core of both algorithms that learn the value of a given policy, as well as algorithms which learn how to improve policies. TD-learning with el igibility traces provides a way to do temporal credit assignment, i.e. decide which portion of a reward should be assigned to predecessor states that occurred at different previous times, controlled by a parameter $lambda$. However, tuning this parameter can be time-consuming, and not tuning it can lead to inefficient learning. To improve the sample efficiency of TD-learning, we propose a meta-learning method for adjusting the eligibility trace parameter, in a state-dependent manner. The adaptation is achieved with the help of auxiliary learners that learn distributional information about the update targets online, incurring roughly the same computational complexity per step as the usual value learner. Our approach can be used both in on-policy and off-policy learning. We prove that, under some assumptions, the proposed method improves the overall quality of the update targets, by minimizing the overall target error. This method can be viewed as a plugin which can also be used to assist prediction with function approximation by meta-learning feature (observation)-based $lambda$ online, or even in the control case to assist policy improvement. Our empirical evaluation demonstrates significant performance improvements, as well as improved robustness of the proposed algorithm to learning rate variation.
Temporal-Difference (TD) learning is a standard and very successful reinforcement learning approach, at the core of both algorithms that learn the value of a given policy, as well as algorithms which learn how to improve policies. TD-learning with el igibility traces provides a way to boost sample efficiency by temporal credit assignment, i.e. deciding which portion of a reward should be assigned to predecessor states that occurred at different previous times, controlled by a parameter $lambda$. However, tuning this parameter can be time-consuming, and not tuning it can lead to inefficient learning. For better sample efficiency of TD-learning, we propose a meta-learning method for adjusting the eligibility trace parameter, in a state-dependent manner. The adaptation is achieved with the help of auxiliary learners that learn distributional information about the update targets online, incurring roughly the same computational complexity per step as the usual value learner. Our approach can be used both in on-policy and off-policy learning. We prove that, under some assumptions, the proposed method improves the overall quality of the update targets, by minimizing the overall target error. This method can be viewed as a plugin to assist prediction with function approximation by meta-learning feature (observation)-based $lambda$ online, or even in the control case to assist policy improvement. Our empirical evaluation demonstrates significant performance improvements, as well as improved robustness of the proposed algorithm to learning rate variation.
Computing expected predictions of discriminative models is a fundamental task in machine learning that appears in many interesting applications such as fairness, handling missing values, and data analysis. Unfortunately, computing expectations of a d iscriminative model with respect to a probability distribution defined by an arbitrary generative model has been proven to be hard in general. In fact, the task is intractable even for simple models such as logistic regression and a naive Bayes distribution. In this paper, we identify a pair of generative and discriminative models that enables tractable computation of expectations, as well as moments of any order, of the latter with respect to the former in case of regression. Specifically, we consider expressive probabilistic circuits with certain structural constraints that support tractable probabilistic inference. Moreover, we exploit the tractable computation of high-order moments to derive an algorithm to approximate the expectations for classification scenarios in which exact computations are intractable. Our framework to compute expected predictions allows for handling of missing data during prediction time in a principled and accurate way and enables reasoning about the behavior of discriminative models. We empirically show our algorithm to consistently outperform standard imputation techniques on a variety of datasets. Finally, we illustrate how our framework can be used for exploratory data analysis.
Optimizing multiple competing black-box objectives is a challenging problem in many fields, including science, engineering, and machine learning. Multi-objective Bayesian optimization is a powerful approach for identifying the optimal trade-offs betw een the objectives with very few function evaluations. However, existing methods tend to perform poorly when observations are corrupted by noise, as they do not take into account uncertainty in the true Pareto frontier over the previously evaluated designs. We propose a novel acquisition function, NEHVI, that overcomes this important practical limitation by applying a Bayesian treatment to the popular expected hypervolume improvement criterion to integrate over this uncertainty in the Pareto frontier. We further argue that, even in the noiseless setting, the problem of generating multiple candidates in parallel reduces that of handling uncertainty in the Pareto frontier. Through this lens, we derive a natural parallel variant of NEHVI that can efficiently generate large batches of candidates. We provide a theoretical convergence guarantee for optimizing a Monte Carlo estimator of NEHVI using exact sample-path gradients. Empirically, we show that NEHVI achieves state-of-the-art performance in noisy and large-batch environments.
Computing the expectation of kernel functions is a ubiquitous task in machine learning, with applications from classical support vector machines to exploiting kernel embeddings of distributions in probabilistic modeling, statistical inference, causal discovery, and deep learning. In all these scenarios, we tend to resort to Monte Carlo estimates as expectations of kernels are intractable in general. In this work, we characterize the conditions under which we can compute expected kernels exactly and efficiently, by leveraging recent advances in probabilistic circuit representations. We first construct a circuit representation for kernels and propose an approach to such tractable computation. We then demonstrate possible advancements for kernel embedding frameworks by exploiting tractable expected kernels to derive new algorithms for two challenging scenarios: 1) reasoning under missing data with kernel support vector regressors; 2) devising a collapsed black-box importance sampling scheme. Finally, we empirically evaluate both algorithms and show that they outperform standard baselines on a variety of datasets.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا