ترغب بنشر مسار تعليمي؟ اضغط هنا

Explainable Deep One-Class Classification

146   0   0.0 ( 0 )
 نشر من قبل Philipp Liznerski
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep one-class classification variants for anomaly detection learn a mapping that concentrates nominal samples in feature space causing anomalies to be mapped away. Because this transformation is highly non-linear, finding interpretations poses a significant challenge. In this paper we present an explainable deep one-class classification method, Fully Convolutional Data Description (FCDD), where the mapped samples are themselves also an explanation heatmap. FCDD yields competitive detection performance and provides reasonable explanations on common anomaly detection benchmarks with CIFAR-10 and ImageNet. On MVTec-AD, a recent manufacturing dataset offering ground-truth anomaly maps, FCDD sets a new state of the art in the unsupervised setting. Our method can incorporate ground-truth anomaly maps during training and using even a few of these (~5) improves performance significantly. Finally, using FCDDs explanations we demonstrate the vulnerability of deep one-class classification models to spurious image features such as image watermarks.



قيم البحث

اقرأ أيضاً

One-class classification (OCC) aims to learn an effective data description to enclose all normal training samples and detect anomalies based on the deviation from the data description. Current state-of-the-art OCC models learn a compact normality des cription by hyper-sphere minimisation, but they often suffer from overfitting the training data, especially when the training set is small or contaminated with anomalous samples. To address this issue, we introduce the interpolated Gaussian descriptor (IGD) method, a novel OCC model that learns a one-class Gaussian anomaly classifier trained with adversarially interpolated training samples. The Gaussian anomaly classifier differentiates the training samples based on their distance to the Gaussian centre and the standard deviation of these distances, offering the model a discriminability w.r.t. the given samples during training. The adversarial interpolation is enforced to consistently learn a smooth Gaussian descriptor, even when the training data is small or contaminated with anomalous samples. This enables our model to learn the data description based on the representative normal samples rather than fringe or anomalous samples, resulting in significantly improved normality description. In extensive experiments on diverse popular benchmarks, including MNIST, Fashion MNIST, CIFAR10, MVTec AD and two medical datasets, IGD achieves better detection accuracy than current state-of-the-art models. IGD also shows better robustness in problems with small or contaminated training sets. Code is available at https://github.com/tianyu0207/IGD.
We present a two-stage framework for deep one-class classification. We first learn self-supervised representations from one-class data, and then build one-class classifiers on learned representations. The framework not only allows to learn better rep resentations, but also permits building one-class classifiers that are faithful to the target task. We argue that classifiers inspired by the statistical perspective in generative or discriminative models are more effective than existing approaches, such as a normality score from a surrogate classifier. We thoroughly evaluate different self-supervised representation learning algorithms under the proposed framework for one-class classification. Moreover, we present a novel distribution-augmented contrastive learning that extends training distributions via data augmentation to obstruct the uniformity of contrastive representations. In experiments, we demonstrate state-of-the-art performance on visual domain one-class classification benchmarks, including novelty and anomaly detection. Finally, we present visual explanations, confirming that the decision-making process of deep one-class classifiers is intuitive to humans. The code is available at https://github.com/google-research/deep_representation_one_class.
Classical approaches for one-class problems such as one-class SVM and isolation forest require careful feature engineering when applied to structured domains like images. State-of-the-art methods aim to leverage deep learning to learn appropriate fea tures via two main approaches. The first approach based on predicting transformations (Golan & El-Yaniv, 2018; Hendrycks et al., 2019a) while successful in some domains, crucially depends on an appropriate domain-specific set of transformations that are hard to obtain in general. The second approach of minimizing a classical one-class loss on the learned final layer representations, e.g., DeepSVDD (Ruff et al., 2018) suffers from the fundamental drawback of representation collapse. In this work, we propose Deep Robust One-Class Classification (DROCC) that is both applicable to most standard domains without requiring any side-information and robust to representation collapse. DROCC is based on the assumption that the points from the class of interest lie on a well-sampled, locally linear low dimensional manifold. Empirical evaluation demonstrates that DROCC is highly effective in two different one-class problem settings and on a range of real-world datasets across different domains: tabular data, images (CIFAR and ImageNet), audio, and time-series, offering up to 20% increase in accuracy over the state-of-the-art in anomaly detection. Code is available at https://github.com/microsoft/EdgeML.
An explainable machine learning method for point cloud classification, called the PointHop method, is proposed in this work. The PointHop method consists of two stages: 1) local-to-global attribute building through iterative one-hop information excha nge, and 2) classification and ensembles. In the attribute building stage, we address the problem of unordered point cloud data using a space partitioning procedure and developing a robust descriptor that characterizes the relationship between a point and its one-hop neighbor in a PointHop unit. When we put multiple PointHop units in cascade, the attributes of a point will grow by taking its relationship with one-hop neighbor points into account iteratively. Furthermore, to control the rapid dimension growth of the attribute vector associated with a point, we use the Saab transform to reduce the attribute dimension in each PointHop unit. In the classification and ensemble stage, we feed the feature vector obtained from multiple PointHop units to a classifier. We explore ensemble methods to improve the classification performance furthermore. It is shown by experimental results that the PointHop method offers classification performance that is comparable with state-of-the-art methods while demanding much lower training complexity.
In this paper, we present a novel deep metric learning method to tackle the multi-label image classification problem. In order to better learn the correlations among images features, as well as labels, we attempt to explore a latent space, where imag es and labels are embedded via two unique deep neural networks, respectively. To capture the relationships between image features and labels, we aim to learn a emph{two-way} deep distance metric over the embedding space from two different views, i.e., the distance between one image and its labels is not only smaller than those distances between the image and its labels nearest neighbors, but also smaller than the distances between the labels and other images corresponding to the labels nearest neighbors. Moreover, a reconstruction module for recovering correct labels is incorporated into the whole framework as a regularization term, such that the label embedding space is more representative. Our model can be trained in an end-to-end manner. Experimental results on publicly available image datasets corroborate the efficacy of our method compared with the state-of-the-arts.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا