ترغب بنشر مسار تعليمي؟ اضغط هنا

Quasi-conserved quantities in the perturbed XXX spin chain

330   0   0.0 ( 0 )
 نشر من قبل Savvas Malikis
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the isotropic spin-1/2 Heisenberg spin chain weakly perturbed by a local translationally- and SU(2)-invariant perturbation. Starting from the local integrals of motion of the unperturbed model, we modify them in order to obtain quasi-conserved integrals of motion (charges) for the perturbed model. Such quasi-conserved quantities are believed to be responsible for the existence of the prethermalization phase at intermediate timescales. We find that for a sufficiently local perturbation only the first few integrals of motion can be promoted to the quasi-conserved charges, whereas higher-order integrals of motion do not survive.



قيم البحث

اقرأ أيضاً

We consider the isotropic spin-$1/2$ Heisenberg spin chain weakly perturbed by a local translationally- and $SU(2)$-invariant perturbation. Starting from the local integrals of motion of the unperturbed model, we modify them in order to obtain quasi- conserved integrals of motion (charges) for the perturbed model. Such quasi-conserved quantities are believed to be responsible for the existence of the prethermalization phase at intermediate timescales. We find that for a sufficiently local perturbation the quasi-conserved quantities indeed exist, and we construct an explicit form for the first few of them.
In statistical mechanics, a small system exchanges conserved quantities---heat, particles, electric charge, etc.---with a bath. The small system thermalizes to the canonical ensemble, or the grand canonical ensemble, etc., depending on the conserved quantities. The conserved quantities are represented by operators usually assumed to commute with each other. This assumption was removed within quantum-information-theoretic (QI-theoretic) thermodynamics recently. The small systems long-time state was dubbed ``the non-Abelian thermal state (NATS). We propose an experimental protocol for observing a system thermalize to the NATS. We illustrate with a chain of spins, a subset of which form the system of interest. The conserved quantities manifest as spin components. Heisenberg interactions push the conserved quantities between the system and the effective bath, the rest of the chain. We predict long-time expectation values, extending the NATS theory from abstract idealization to finite systems that thermalize with finite couplings for finite times. Numerical simulations support the analytics: The system thermalizes to the NATS, rather than to the canonical prediction. Our proposal can be implemented with ultracold atoms, nitrogen-vacancy centers, trapped ions, quantum dots, and perhaps nuclear magnetic resonance. This work introduces noncommuting conserved quantities from QI-theoretic thermodynamics into quantum many-body physics: atomic, molecular, and optical physics and condensed matter.
We have calculated the energy per site for the ground state of antiferromagnetic quantum spin chain with variable range exchange $h(j-k)propto sinh^2 a sinh^{-2}a(j-k)$ in the framework of the asymptotic Bethe ansatz. By expanding it in powers of $e^ {-2a}$, we have confirmed the value of the second-neighbor correlator for the model with nearest-neighbor exchange obtained earlier in the atomic limit of the Hubbard chain.
We numerically construct translationally invariant quasi-conserved operators with maximum range M which best-commute with a non-integrable quantum spin chain Hamiltonian, up to M = 12. In the large coupling limit, we find that the residual norm of th e commutator of the quasi-conserved operator decays exponentially with its maximum range M at small M, and turns into a slower decay at larger M. This quasi-conserved operator can be understood as a dressed total spin-z operator, by comparing with the perturbative Schrieffer-Wolff construction developed to high order reaching essentially the same maximum range. We also examine the operator inverse participation ratio of the operator, which suggests its localization in the operator Hilbert space. The operator also shows almost exponentially decaying profile at short distance, while the long-distance behavior is not clear due to limitations of our numerical calculation. Further dynamical simulation confirms that the prethermalization-equilibrated values are described by a generalized Gibbs ensemble that includes such quasi-conserved operator.
242 - Gaoyong Sun , Bo-Bo Wei 2020
We analytically and numerically study the Loschmidt echo and the dynamical order parameters in a spin chain with a deconfined phase transition between a dimerized state and a ferromagnetic phase. For quenches from a dimerized state to a ferromagnetic phase, we find that the model can exhibit a dynamical quantum phase transition characterized by an associating dimerized order parameters. In particular, when quenching the system from the Majumdar-Ghosh state to the ferromagnetic Ising state, we find an exact mapping into the classical Ising chain for a quench from the paramagnetic phase to the classical Ising phase by analytically calculating the Loschmidt echo and the dynamical order parameters. By contrast, for quenches from a ferromagnetic state to a dimerized state, the system relaxes very fast so that the dynamical quantum transition may only exist in a short time scale. We reveal that the dynamical quantum phase transition can occur in systems with two broken symmetry phases and the quench dynamics may be independent on equilibrium phase transitions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا