ترغب بنشر مسار تعليمي؟ اضغط هنا

A Run-Wise Simulation and Analysis Framework for Imaging Atmospheric Cherenkov Telescope Arrays

50   0   0.0 ( 0 )
 نشر من قبل Markus Holler
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a new simulation and analysis paradigm for Imaging Atmospheric Cherenkov Telescope (IACT) arrays, simulating the actual observation conditions as well as individual telescope configuration for each observation unit. Compared to existing frameworks, where simulations are usually generated using pre-defined settings, this run-wise simulation approach implies more realistic simulations and hence reduced systematic uncertainties. The computational effort of this dedicated simulation concept is notably independent of the amount of different observation configurations but just scales linearly with observation time. This corresponds to a large advantage for increasingly complex current and future IACT arrays where the size of the phase space makes it computationally unfeasible to generate simulations that reach the requirements regarding systematics using the classical simulation scheme.



قيم البحث

اقرأ أيضاً

Ground-based gamma-ray astronomy experienced a major boost with the advent of the present generation of Imaging Atmospheric Cherenkov Telescopes (IACTs) in the past decade. Photons of energies >~ 0.1 TeV are a very useful tool in the study of several fundamental physics topics, which have become an important part of the research program of all major IACTs. A review of some recent results in the field is presented.
456 - E. Moulin 2009
The annihilations of WIMPs produce high energy gamma-rays in the final state. These high energy gamma-rays may be detected by imaging atmospheric Cherenkov telescopes (IACTs). Amongst the plausible targets are the Galactic Center, the centre of galax y clusters, dwarf Sphreroidal galaxies and substructures in Galactic haloes. I will review on the recent results from observations of ongoing IACTs.
275 - S. Mangano 2017
The Cherenkov Telescope Array (CTA) will be the next generation of ground based gamma-ray telescopes allowing us to study very high energy phenomena in the Universe. CTA aims to gain about a factor of ten in sensitivity compared to current experiment s, extending the accessible gamma-ray energy range from a few tens of GeV to some hundreds of TeV. This increased gamma-ray source sensitivity, as well as the expected enhanced energy and spatial resolution, will allow exciting new insights in some key science topics. Additionally, CTA will provide a full sky-coverage by featuring the array located in two sites in the Northern and Southern hemispheres. This paper will describe the status of CTA and highlight some of CTAs key science themes; namely the origin of relativistic cosmic particles, the study of cosmological effects on gamma-ray propagation and the search for annihilating dark matter particles.
69 - S. Vincent 2015
We present a sophisticated likelihood reconstruction algorithm for shower-image analysis of imaging Cherenkov telescopes. The reconstruction algorithm is based on the comparison of the camera pixel amplitudes with the predictions from a Monte Carlo b ased model. Shower parameters are determined by a maximisation of a likelihood function. Maximisation of the likelihood as a function of shower fit parameters is performed using a numerical non-linear optimisation technique. A related reconstruction technique has already been developed by the CAT and the H.E.S.S. experiments, and provides a more precise direction and energy reconstruction of the photon induced shower compared to the second moment of the camera image analysis. Examples are shown of the performance of the analysis on simulated gamma-ray data from the VERITAS array.
A fast trigger system is being designed as a potential upgrade to VERITAS, or as the basis for a future array of imaging atmospheric-Cherenkov telescopes such as AGIS. The scientific goal is a reduction of the energy threshold by a factor of 2 over t he current threshold of VERITAS of around 130 GeV. The trigger is being designed to suppress both accidentals from the night-sky background and cosmic rays. The trigger uses field-programmable gate arrays (FPGAs) so that it is adaptable to different observing modes and special physics triggers, e.g. pulsars. The trigger consists of three levels: The level 1 (L1.5) trigger operating on each telescope camera samples the discriminated pixels at a rate of 400 MHz and searches for nearest-neighbor coincidences. In L1.5, the received discriminated signals are delay-compensated with an accuracy of 0.078 ns, facilitating a short coincidence time-window between any nearest neighbor of 5 ns. The hit pixels are then sent to a second trigger level (L2) that parameterizes the image shape and transmits this information along with a GPS time stamp to the array-level trigger (L3) at a rate of 10 MHz via a fiber optic link. The FPGA-based event analysis on L3 searches for coincident time-stamps from multiple telescopes and carries out a comparison of the image parameters against a look-up table at a rate of 10 kHz. A test of the single-telescope trigger was carried out in spring 2009 on one VERITAS telescope.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا