ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark Matter searches with imaging atmospheric Cherenkov telescopes

352   0   0.0 ( 0 )
 نشر من قبل Moulin Emmanuel
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف E. Moulin




اسأل ChatGPT حول البحث

The annihilations of WIMPs produce high energy gamma-rays in the final state. These high energy gamma-rays may be detected by imaging atmospheric Cherenkov telescopes (IACTs). Amongst the plausible targets are the Galactic Center, the centre of galaxy clusters, dwarf Sphreroidal galaxies and substructures in Galactic haloes. I will review on the recent results from observations of ongoing IACTs.

قيم البحث

اقرأ أيضاً

Ground-based gamma-ray astronomy experienced a major boost with the advent of the present generation of Imaging Atmospheric Cherenkov Telescopes (IACTs) in the past decade. Photons of energies >~ 0.1 TeV are a very useful tool in the study of several fundamental physics topics, which have become an important part of the research program of all major IACTs. A review of some recent results in the field is presented.
In this paper, we compare dwarf galaxies and galaxy clusters in order to elucidate which object class is the best target for gamma-ray DM searches with imaging atmospheric Cherenkov telescopes (IACTs). We have built a mixed dwarfs+clusters sample con taining some of the most promising nearby dwarf galaxies (Draco, Ursa Minor, Wilman 1 and Segue 1) and local galaxy clusters (Perseus, Coma, Ophiuchus, Virgo, Fornax, NGC5813 and NGC5846), and then compute their DM annihilation flux profiles by making use of the latest modeling of their DM density profiles. We also include in our calculations the effect of DM substructure. Willman 1 appears as the best candidate in the sample. However, its mass modeling is still rather uncertain, so probably other candidates with less uncertainties and quite similar fluxes, namely Ursa Minor and Segue 1, might be better options. As for galaxy clusters, Virgo represents the one with the highest flux. However, its large spatial extension can be a serious handicap for IACT observations and posterior data analysis. Yet, other local galaxy cluster candidates with more moderate emission regions, such as Perseus, may represent good alternatives. After comparing dwarfs and clusters, we found that the former exhibit annihilation flux profiles that, at the center, are roughly one order of magnitude higher than those of clusters, although galaxy clusters can yield similar, or even higher, integrated fluxes for the whole object once substructure is taken into account. Even when any of these objects are strictly point-like according to the properties of their annihilation signals, we conclude that dwarf galaxies are best suited for observational strategies based on the search of point-like sources, while galaxy clusters represent best targets for analyses that can deal with rather extended emissions. Finally, we study the detection prospects for IACTs [ABRIDGED]
A TeV scale electroweak particle is a well motivated candidate for the dark matter (DM) of our Universe. Yet such a particle may only be detectable using indirect detection instruments sensitive to TeV-scale gamma rays that can result from dark matte r annihilations. We present a mock analysis of the sensitivity for the present ground-based Cherenkov telescope array H.E.S.S. (High Energy Spectroscopic System) to detect TeV scale DM in the Galactic Center region. The work combines next-to-leading-logarithmic order calculations for the annihilation photon spectrum, as well as a comprehensive treatment of detector effects and expected backgrounds. Forecast limits on the sensitivity of H.E.S.S. have been derived across the important TeV mass range, assuming different DM density profiles and focusing on the canonical WIMP dark matter candidate Wino.These limits test our present and future ability to probe the predicted thermal cross section for some of the most promising DM candidates that could be discovered in the coming decade.
The presence of substructures in dark matter haloes is an unavoidable consequence of the cold dark matter paradigm. Indirect signals from these objects have been extensively searched for with cosmic rays and gamma-rays. At first sight, Cherenkov tele scopes seem not very well suited for such searches, due to their small fields of view and the random nature of the possible dark matter substructure positions in the sky. However, with long enough exposure and an adequate observation strategy, the very good sensitivity of this experimental technique allows us to constrain particle dark matter models. We confront here the sensitivity map of the HESS experiment built out of their Galactic scan survey to the state-of-the-art cosmological N-body simulation Via Lactea II. We obtain competitive constraints on the annihilation cross section, at the level of 10^-24 -10^-23 cm^3s^-1. The results are extrapolated to the future Cherenkov Telescope Array, in the cases of a Galactic plane survey and of an even wider extragalactic survey. In the latter case, it is shown that the sensitivity of the Cherenkov Telescope Array will be sufficient to reach the most natural particle dark matter models.
A fast trigger system is being designed as a potential upgrade to VERITAS, or as the basis for a future array of imaging atmospheric-Cherenkov telescopes such as AGIS. The scientific goal is a reduction of the energy threshold by a factor of 2 over t he current threshold of VERITAS of around 130 GeV. The trigger is being designed to suppress both accidentals from the night-sky background and cosmic rays. The trigger uses field-programmable gate arrays (FPGAs) so that it is adaptable to different observing modes and special physics triggers, e.g. pulsars. The trigger consists of three levels: The level 1 (L1.5) trigger operating on each telescope camera samples the discriminated pixels at a rate of 400 MHz and searches for nearest-neighbor coincidences. In L1.5, the received discriminated signals are delay-compensated with an accuracy of 0.078 ns, facilitating a short coincidence time-window between any nearest neighbor of 5 ns. The hit pixels are then sent to a second trigger level (L2) that parameterizes the image shape and transmits this information along with a GPS time stamp to the array-level trigger (L3) at a rate of 10 MHz via a fiber optic link. The FPGA-based event analysis on L3 searches for coincident time-stamps from multiple telescopes and carries out a comparison of the image parameters against a look-up table at a rate of 10 kHz. A test of the single-telescope trigger was carried out in spring 2009 on one VERITAS telescope.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا