ﻻ يوجد ملخص باللغة العربية
The possibility of using Shattered Pellet Injection(s) after the Thermal Quench phase of an ITER disruption in order to deplete Runaway Electron (RE) seeds before they can substantially avalanche is studied. Analytical and numerical estimates of the required injection rate for shards to penetrate into the forming RE beam and stop REs are given. How much material could be assimilated before the Current Quench (CQ) becomes too short is also estimated. It appears that, if Hydrogen pellets were used, the required number of pellets to be injected during the CQ would be prohibitive, at least considering the present design of the ITER Disruption Mitigation System (DMS). For Neon or Argon, the required number of pellets, although large, might be within reach of the ITER DMS, but the assimilated fraction would have to be very small. Other materials may be better suited but would require a modification of the ITER DMS.
JOREK 3D non-linear MagnetoHydroDynamic (MHD) simulations of pure Deuterium Shattered Pellet Injection in ITER are presented. It is shown that such a scheme could allow diluting the plasma by more than a factor 10 without immediately triggering large
The radiation response and the MHD destabilization during the thermal quench after a mixed species Shattered Pellet Injection (SPI) with impurity species neon and argon are investigated via 3D non-linear MHD simulation using the JOREK code. Both the
First simulations of deuterium shattered pellet injection (SPI) into an ASDEX Upgrade H-Mode plasma with the JOREK MHD code are presented. Resistivity is increased by one order of magnitude in most simulations to reduce computational costs and allow
Mitigation of runaway electrons is one of the outstanding issues for the reliable operation of ITER and other large tokamaks, and accurate estimates for the expected runaway-electron energies and current are needed. Previously, linearized tools (whic
Precise delivery of mass to burning plasmas is a problem of growing interest in magnetic fusion. The answers to how much mass is necessary and sufficient can vary depending on parameters such as the type of atoms involved, the type of applications, p