ﻻ يوجد ملخص باللغة العربية
In this article we presented a brief study of the main network models with growth and preferential attachment. Such models are interesting because they present several characteristics of real systems. We started with the classical model proposed by Barabasi and Albert: nodes are added to the network connecting preferably to other nodes that are more connected. We also presented models that consider more representative elements from social perspectives, such as the homophily between the vertices or the fitness that each node has to build connections. Furthermore, we showed a version of these models including the Euclidean distance between the nodes as a preferential attachment rule. Our objective is to investigate the basic properties of these networks as distribution of connectivity, degree correlation, shortest path, cluster coefficient and how these characteristics are affected by the preferential attachment rules. Finally, we also provided a comparison of these synthetic networks with real ones. We found that characteristics as homophily, fitness and geographic distance are significant preferential attachment rules to modeling real networks. These rules can change the degree distribution form of these synthetic network models and make them more suitable to model real networks.
In the Yule-Simon process, selection of words follows the preferential attachment mechanism, resulting in the power-law growth in the cumulative number of individual word occurrences. This is derived using mean-field approximation, assuming a continu
All real networks are different, but many have some structural properties in common. There seems to be no consensus on what the most common properties are, but scale-free degree distributions, strong clustering, and community structure are frequently
A preferential attachment model for a growing network incorporating deletion of edges is studied and the expected asymptotic degree distribution is analyzed. At each time step $t=1,2,ldots$, with probability $pi_1>0$ a new vertex with one edge attach
We introduce a two-dimensional growth model where every new site is located, at a distance $r$ from the barycenter of the pre-existing graph, according to the probability law $1/r^{2+alpha_G} (alpha_G ge 0)$, and is attached to (only) one pre-existin
A first-order percolation transition, called explosive percolation, was recently discovered in evolution networks with random edge selection under a certain restriction. However, the network percolation with more realistic evolution mechanisms such a