ترغب بنشر مسار تعليمي؟ اضغط هنا

Structure Adaptive Algorithms for Stochastic Bandits

248   0   0.0 ( 0 )
 نشر من قبل R\\'emy Degenne
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

We study reward maximisation in a wide class of structured stochastic multi-armed bandit problems, where the mean rewards of arms satisfy some given structural constraints, e.g. linear, unimodal, sparse, etc. Our aim is to develop methods that are flexible (in that they easily adapt to different structures), powerful (in that they perform well empirically and/or provably match instance-dependent lower bounds) and efficient in that the per-round computational burden is small. We develop asymptotically optimal algorithms from instance-dependent lower-bounds using iterative saddle-point solvers. Our approach generalises recent iterative methods for pure exploration to reward maximisation, where a major challenge arises from the estimation of the sub-optimality gaps and their reciprocals. Still we manage to achieve all the above desiderata. Notably, our technique avoids the computational cost of the full-blown saddle point oracle employed by previous work, while at the same time enabling finite-time regret bounds. Our experiments reveal that our method successfully leverages the structural assumptions, while its regret is at worst comparable to that of vanilla UCB.

قيم البحث

اقرأ أيضاً

We consider the problem of model selection for two popular stochastic linear bandit settings, and propose algorithms that adapts to the unknown problem complexity. In the first setting, we consider the $K$ armed mixture bandits, where the mean reward of arm $i in [K]$, is $mu_i+ langle alpha_{i,t},theta^* rangle $, with $alpha_{i,t} in mathbb{R}^d$ being the known context vector and $mu_i in [-1,1]$ and $theta^*$ are unknown parameters. We define $|theta^*|$ as the problem complexity and consider a sequence of nested hypothesis classes, each positing a different upper bound on $|theta^*|$. Exploiting this, we propose Adaptive Linear Bandit (ALB), a novel phase based algorithm that adapts to the true problem complexity, $|theta^*|$. We show that ALB achieves regret scaling of $O(|theta^*|sqrt{T})$, where $|theta^*|$ is apriori unknown. As a corollary, when $theta^*=0$, ALB recovers the minimax regret for the simple bandit algorithm without such knowledge of $theta^*$. ALB is the first algorithm that uses parameter norm as model section criteria for linear bandits. Prior state of art algorithms cite{osom} achieve a regret of $O(Lsqrt{T})$, where $L$ is the upper bound on $|theta^*|$, fed as an input to the problem. In the second setting, we consider the standard linear bandit problem (with possibly an infinite number of arms) where the sparsity of $theta^*$, denoted by $d^* leq d$, is unknown to the algorithm. Defining $d^*$ as the problem complexity, we show that ALB achieves $O(d^*sqrt{T})$ regret, matching that of an oracle who knew the true sparsity level. This methodology is then extended to the case of finitely many arms and similar results are proven. This is the first algorithm that achieves such model selection guarantees. We further verify our results via synthetic and real-data experiments.
76 - Sehwan Kim , Qifan Song , 2020
Bayesian deep learning offers a principled way to address many issues concerning safety of artificial intelligence (AI), such as model uncertainty,model interpretability, and prediction bias. However, due to the lack of efficient Monte Carlo algorith ms for sampling from the posterior of deep neural networks (DNNs), Bayesian deep learning has not yet powered our AI system. We propose a class of adaptive stochastic gradient Markov chain Monte Carlo (SGMCMC) algorithms, where the drift function is biased to enhance escape from saddle points and the bias is adaptively adjusted according to the gradient of past samples. We establish the convergence of the proposed algorithms under mild conditions, and demonstrate via numerical examples that the proposed algorithms can significantly outperform the existing SGMCMC algorithms, such as stochastic gradient Langevin dynamics (SGLD), stochastic gradient Hamiltonian Monte Carlo (SGHMC) and preconditioned SGLD, in both simulation and optimization tasks.
The contextual bandit literature has traditionally focused on algorithms that address the exploration-exploitation tradeoff. In particular, greedy algorithms that exploit current estimates without any exploration may be sub-optimal in general. Howeve r, exploration-free greedy algorithms are desirable in practical settings where exploration may be costly or unethical (e.g., clinical trials). Surprisingly, we find that a simple greedy algorithm can be rate optimal (achieves asymptotically optimal regret) if there is sufficient randomness in the observed contexts (covariates). We prove that this is always the case for a two-armed bandit under a general class of context distributions that satisfy a condition we term covariate diversity. Furthermore, even absent this condition, we show that a greedy algorithm can be rate optimal with positive probability. Thus, standard bandit algorithms may unnecessarily explore. Motivated by these results, we introduce Greedy-First, a new algorithm that uses only observed contexts and rewards to determine whether to follow a greedy algorithm or to explore. We prove that this algorithm is rate optimal without any additional assumptions on the context distribution or the number of arms. Extensive simulations demonstrate that Greedy-First successfully reduces exploration and outperforms existing (exploration-based) contextual bandit algorithms such as Thompson sampling or upper confidence bound (UCB).
We study a generalization of the multi-armed bandit problem with multiple plays where there is a cost associated with pulling each arm and the agent has a budget at each time that dictates how much she can expect to spend. We derive an asymptotic reg ret lower bound for any uniformly efficient algorithm in our setting. We then study a variant of Thompson sampling for Bernoulli rewards and a variant of KL-UCB for both single-parameter exponential families and bounded, finitely supported rewards. We show these algorithms are asymptotically optimal, both in rateand leading problem-dependent constants, including in the thick margin setting where multiple arms fall on the decision boundary.
Classic contextual bandit algorithms for linear models, such as LinUCB, assume that the reward distribution for an arm is modeled by a stationary linear regression. When the linear regression model is non-stationary over time, the regret of LinUCB ca n scale linearly with time. In this paper, we propose a novel multiscale changepoint detection method for the non-stationary linear bandit problems, called Multiscale-LinUCB, which actively adapts to the changing environment. We also provide theoretical analysis of regret bound for Multiscale-LinUCB algorithm. Experimental results show that our proposed Multiscale-LinUCB algorithm outperforms other state-of-the-art algorithms in non-stationary contextual environments.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا