ترغب بنشر مسار تعليمي؟ اضغط هنا

Scalable Monte Carlo Inference and Rescaled Local Asymptotic Normality

65   0   0.0 ( 0 )
 نشر من قبل Ning Ning
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we generalize the property of local asymptotic normality (LAN) to an enlarged neighborhood, under the name of rescaled local asymptotic normality (RLAN). We obtain sufficient conditions for a regular parametric model to satisfy RLAN. We show that RLAN supports the construction of a statistically efficient estimator which maximizes a cubic approximation to the log-likelihood on this enlarged neighborhood. In the context of Monte Carlo inference, we find that this maximum cubic likelihood estimator can maintain its statistical efficiency in the presence of asymptotically increasing Monte Carlo error in likelihood evaluation.



قيم البحث

اقرأ أيضاً

168 - Chunlin Wang 2008
In this paper, we study the asymptotic normality of the conditional maximum likelihood (ML) estimators for the truncated regression model and the Tobit model. We show that under the general setting assumed in his book, the conjectures made by Hayashi (2000) footnote{see page 516, and page 520 of Hayashi (2000).} about the asymptotic normality of the conditional ML estimators for both models are true, namely, a sufficient condition is the nonsingularity of $mathbf{x_tx_t}$.
In the last decade, sequential Monte-Carlo methods (SMC) emerged as a key tool in computational statistics. These algorithms approximate a sequence of distributions by a sequence of weighted empirical measures associated to a weighted population of p articles. These particles and weights are generated recursively according to elementary transformations: mutation and selection. Examples of applications include the sequential Monte-Carlo techniques to solve optimal non-linear filtering problems in state-space models, molecular simulation, genetic optimization, etc. Despite many theoretical advances the asymptotic property of these approximations remains of course a question of central interest. In this paper, we analyze sequential Monte Carlo methods from an asymptotic perspective, that is, we establish law of large numbers and invariance principle as the number of particles gets large. We introduce the concepts of weighted sample consistency and asymptotic normality, and derive conditions under which the mutation and the selection procedure used in the sequential Monte-Carlo build-up preserve these properties. To illustrate our findings, we analyze SMC algorithms to approximate the filtering distribution in state-space models. We show how our techniques allow to relax restrictive technical conditions used in previously reported works and provide grounds to analyze more sophisticated sequential sampling strategies.
79 - A.J. van Es , H.-W. Uh 2001
We derive asymptotic normality of kernel type deconvolution estimators of the density, the distribution function at a fixed point, and of the probability of an interval. We consider the so called super smooth case where the characteristic function of the known distribution decreases exponentially. It turns out that the limit behavior of the pointwise estimators of the density and distribution function is relatively straightforward while the asymptotics of the estimator of the probability of an interval depends in a complicated way on the sequence of bandwidths.
207 - Tore Selland Kleppe 2018
Dynamically rescaled Hamiltonian Monte Carlo (DRHMC) is introduced as a computationally fast and easily implemented method for performing full Bayesian analysis in hierarchical statistical models. The method relies on introducing a modified parameter isation so that the re-parameterised target distribution has close to constant scaling properties, and thus is easily sampled using standard (Euclidian metric) Hamiltonian Monte Carlo. Provided that the parameterisations of the conditional distributions specifying the hierarchical model are constant information parameterisations (CIP), the relation between the modified- and original parameterisation is bijective, explicitly computed and admit exploitation of sparsity in the numerical linear algebra involved. CIPs for a large catalogue of statistical models are presented, and from the catalogue, it is clear that many CIPs are currently routinely used in statistical computing. A relation between the proposed methodology and a class of explicitly integrated Riemann manifold Hamiltonian Monte Carlo methods is discussed. The methodology is illustrated on several example models, including a model for inflation rates with multiple levels of non-linearly dependent latent variables.
The Gaussian graphical model, a popular paradigm for studying relationship among variables in a wide range of applications, has attracted great attention in recent years. This paper considers a fundamental question: When is it possible to estimate lo w-dimensional parameters at parametric square-root rate in a large Gaussian graphical model? A novel regression approach is proposed to obtain asymptotically efficient estimation of each entry of a precision matrix under a sparseness condition relative to the sample size. When the precision matrix is not sufficiently sparse, or equivalently the sample size is not sufficiently large, a lower bound is established to show that it is no longer possible to achieve the parametric rate in the estimation of each entry. This lower bound result, which provides an answer to the delicate sample size question, is established with a novel construction of a subset of sparse precision matrices in an application of Le Cams lemma. Moreover, the proposed estimator is proven to have optimal convergence rate when the parametric rate cannot be achieved, under a minimal sample requirement. The proposed estimator is applied to test the presence of an edge in the Gaussian graphical model or to recover the support of the entire model, to obtain adaptive rate-optimal estimation of the entire precision matrix as measured by the matrix $ell_q$ operator norm and to make inference in latent variables in the graphical model. All of this is achieved under a sparsity condition on the precision matrix and a side condition on the range of its spectrum. This significantly relaxes the commonly imposed uniform signal strength condition on the precision matrix, irrepresentability condition on the Hessian tensor operator of the covariance matrix or the $ell_1$ constraint on the precision matrix. Numerical results confirm our theoretical findings. The ROC curve of the proposed algorithm, Asymptotic Normal Thresholding (ANT), for support recovery significantly outperforms that of the popular GLasso algorithm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا