ﻻ يوجد ملخص باللغة العربية
The Gaussian graphical model, a popular paradigm for studying relationship among variables in a wide range of applications, has attracted great attention in recent years. This paper considers a fundamental question: When is it possible to estimate low-dimensional parameters at parametric square-root rate in a large Gaussian graphical model? A novel regression approach is proposed to obtain asymptotically efficient estimation of each entry of a precision matrix under a sparseness condition relative to the sample size. When the precision matrix is not sufficiently sparse, or equivalently the sample size is not sufficiently large, a lower bound is established to show that it is no longer possible to achieve the parametric rate in the estimation of each entry. This lower bound result, which provides an answer to the delicate sample size question, is established with a novel construction of a subset of sparse precision matrices in an application of Le Cams lemma. Moreover, the proposed estimator is proven to have optimal convergence rate when the parametric rate cannot be achieved, under a minimal sample requirement. The proposed estimator is applied to test the presence of an edge in the Gaussian graphical model or to recover the support of the entire model, to obtain adaptive rate-optimal estimation of the entire precision matrix as measured by the matrix $ell_q$ operator norm and to make inference in latent variables in the graphical model. All of this is achieved under a sparsity condition on the precision matrix and a side condition on the range of its spectrum. This significantly relaxes the commonly imposed uniform signal strength condition on the precision matrix, irrepresentability condition on the Hessian tensor operator of the covariance matrix or the $ell_1$ constraint on the precision matrix. Numerical results confirm our theoretical findings. The ROC curve of the proposed algorithm, Asymptotic Normal Thresholding (ANT), for support recovery significantly outperforms that of the popular GLasso algorithm.
We consider the problem of constructing nonparametric undirected graphical models for high-dimensional functional data. Most existing statistical methods in this context assume either a Gaussian distribution on the vertices or linear conditional mean
Gaussian graphical models are widely utilized to infer and visualize networks of dependencies between continuous variables. However, inferring the graph is difficult when the sample size is small compared to the number of variables. To reduce the num
Directed graphical models specify noisy functional relationships among a collection of random variables. In the Gaussian case, each such model corresponds to a semi-algebraic set of positive definite covariance matrices. The set is given via parametr
We study parameter identifiability of directed Gaussian graphical models with one latent variable. In the scenario we consider, the latent variable is a confounder that forms a source node of the graph and is a parent to all other nodes, which corres
We propose a modern method to estimate population size based on capture-recapture designs of K samples. The observed data is formulated as a sample of n i.i.d. K-dimensional vectors of binary indicators, where the k-th component of each vector indica