ترغب بنشر مسار تعليمي؟ اضغط هنا

Sequential Transfer in Reinforcement Learning with a Generative Model

79   0   0.0 ( 0 )
 نشر من قبل Andrea Tirinzoni
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

We are interested in how to design reinforcement learning agents that provably reduce the sample complexity for learning new tasks by transferring knowledge from previously-solved ones. The availability of solutions to related problems poses a fundamental trade-off: whether to seek policies that are expected to achieve high (yet sub-optimal) performance in the new task immediately or whether to seek information to quickly identify an optimal solution, potentially at the cost of poor initial behavior. In this work, we focus on the second objective when the agent has access to a generative model of state-action pairs. First, given a set of solved tasks containing an approximation of the target one, we design an algorithm that quickly identifies an accurate solution by seeking the state-action pairs that are most informative for this purpose. We derive PAC bounds on its sample complexity which clearly demonstrate the benefits of using this kind of prior knowledge. Then, we show how to learn these approximate tasks sequentially by reducing our transfer setting to a hidden Markov model and employing spectral methods to recover its parameters. Finally, we empirically verify our theoretical findings in simple simulated domains.



قيم البحث

اقرأ أيضاً

We consider the transfer of experience samples (i.e., tuples < s, a, s, r >) in reinforcement learning (RL), collected from a set of source tasks to improve the learning process in a given target task. Most of the related approaches focus on selectin g the most relevant source samples for solving the target task, but then all the transferred samples are used without considering anymore the discrepancies between the task models. In this paper, we propose a model-based technique that automatically estimates the relevance (importance weight) of each source sample for solving the target task. In the proposed approach, all the samples are transferred and used by a batch RL algorithm to solve the target task, but their contribution to the learning process is proportional to their importance weight. By extending the results for importance weighting provided in supervised learning literature, we develop a finite-sample analysis of the proposed batch RL algorithm. Furthermore, we empirically compare the proposed algorithm to state-of-the-art approaches, showing that it achieves better learning performance and is very robust to negative transfer, even when some source tasks are significantly different from the target task.
In real-world applications, it is often expensive and time-consuming to obtain labeled examples. In such cases, knowledge transfer from related domains, where labels are abundant, could greatly reduce the need for extensive labeling efforts. In this scenario, transfer learning comes in hand. In this paper, we propose Deep Variational Transfer (DVT), a variational autoencoder that transfers knowledge across domains using a shared latent Gaussian mixture model. Thanks to the combination of a semi-supervised ELBO and parameters sharing across domains, we are able to simultaneously: (i) align all supervised examples of the same class into the same latent Gaussian Mixture component, independently from their domain; (ii) predict the class of unsupervised examples from different domains and use them to better model the occurring shifts. We perform tests on MNIST and USPS digits datasets, showing DVTs ability to perform transfer learning across heterogeneous datasets. Additionally, we present DVTs top classification performances on the MNIST semi-supervised learning challenge. We further validate DVT on a astronomical datasets. DVT achieves states-of-the-art classification performances, transferring knowledge across real stars surveys datasets, EROS, MACHO and HiTS, . In the worst performance, we double the achieved F1-score for rare classes. These experiments show DVTs ability to tackle all major challenges posed by transfer learning: different covariate distributions, different and highly imbalanced class distributions and different feature spaces.
The curse of dimensionality is a widely known issue in reinforcement learning (RL). In the tabular setting where the state space $mathcal{S}$ and the action space $mathcal{A}$ are both finite, to obtain a nearly optimal policy with sampling access to a generative model, the minimax optimal sample complexity scales linearly with $|mathcal{S}|times|mathcal{A}|$, which can be prohibitively large when $mathcal{S}$ or $mathcal{A}$ is large. This paper considers a Markov decision process (MDP) that admits a set of state-action features, which can linearly express (or approximate) its probability transition kernel. We show that a model-based approach (resp.$~$Q-learning) provably learns an $varepsilon$-optimal policy (resp.$~$Q-function) with high probability as soon as the sample size exceeds the order of $frac{K}{(1-gamma)^{3}varepsilon^{2}}$ (resp.$~$$frac{K}{(1-gamma)^{4}varepsilon^{2}}$), up to some logarithmic factor. Here $K$ is the feature dimension and $gammain(0,1)$ is the discount factor of the MDP. Both sample complexity bounds are provably tight, and our result for the model-based approach matches the minimax lower bound. Our results show that for arbitrarily large-scale MDP, both the model-based approach and Q-learning are sample-efficient when $K$ is relatively small, and hence the title of this paper.
129 - Yang Hu , Giovanni Montana 2019
Transfer learning methods for reinforcement learning (RL) domains facilitate the acquisition of new skills using previously acquired knowledge. The vast majority of existing approaches assume that the agents have the same design, e.g. same shape and action spaces. In this paper we address the problem of transferring previously acquired skills amongst morphologically different agents (MDAs). For instance, assuming that a bipedal agent has been trained to move forward, could this skill be transferred on to a one-leg hopper so as to make its training process for the same task more sample efficient? We frame this problem as one of subspace learning whereby we aim to infer latent factors representing the control mechanism that is common between MDAs. We propose a novel paired variational encoder-decoder model, PVED, that disentangles the control of MDAs into shared and agent-specific factors. The shared factors are then leveraged for skill transfer using RL. Theoretically, we derive a theorem indicating how the performance of PVED depends on the shared factors and agent morphologies. Experimentally, PVED has been extensively validated on four MuJoCo environments. We demonstrate its performance compared to a state-of-the-art approach and several ablation cases, visualize and interpret the hidden factors, and identify avenues for future improvements.
Deep reinforcement learning has achieved impressive successes yet often requires a very large amount of interaction data. This result is perhaps unsurprising, as using complicated function approximation often requires more data to fit, and early theo retical results on linear Markov decision processes provide regret bounds that scale with the dimension of the linear approximation. Ideally, we would like to automatically identify the minimal dimension of the approximation that is sufficient to encode an optimal policy. Towards this end, we consider the problem of model selection in RL with function approximation, given a set of candidate RL algorithms with known regret guarantees. The learners goal is to adapt to the complexity of the optimal algorithm without knowing it textit{a priori}. We present a meta-algorithm that successively rejects increasingly complex models using a simple statistical test. Given at least one candidate that satisfies realizability, we prove the meta-algorithm adapts to the optimal complexity with $tilde{O}(L^{5/6} T^{2/3})$ regret compared to the optimal candidates $tilde{O}(sqrt T)$ regret, where $T$ is the number of episodes and $L$ is the number of algorithms. The dimension and horizon dependencies remain optimal with respect to the best candidate, and our meta-algorithmic approach is flexible to incorporate multiple candidate algorithms and models. Finally, we show that the meta-algorithm automatically admits significantly improved instance-dependent regret bounds that depend on the gaps between the maximal values attainable by the candidates.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا