ﻻ يوجد ملخص باللغة العربية
We study the independent alignment percolation model on $mathbb{Z}^d$ introduced by Beaton, Grimmett and Holmes [arXiv:1908.07203]. It is a model for random intersecting line segments defined as follows. First the sites of $mathbb{Z}^d$ are independently declared occupied with probability $p$ and vacant otherwise. Conditional on the configuration of occupied vertices, consider the set of all line segments that are parallel to the coordinate axis, whose extremes are occupied vertices and that do not traverse any other occupied vertex. Declare independently the segments on this set open with probability $lambda$ and closed otherwise. All the edges that lie on open segments are also declared open giving rise to a bond percolation model in $mathbb{Z}^d$. We show that for any $d geq 2$ and $p in (0,1]$ the critical value for $lambda$ satisfies $lambda_c(p)<1$ completing the proof that the phase transition is non-trivial over the whole interval $(0,1]$. We also show that the critical curve $p mapsto lambda_c(p)$ is continuous at $p=1$, answering a question posed by the authors in [arXiv:1908.07203].
In this article we study the sharpness of the phase transition for percolation models defined on top of planar spin systems. The two examples that we treat in detail concern the Glauber dynamics for the Ising model and a Dynamic Bootstrap process. Fo
Let $mathbb{G}=left(mathbb{V},mathbb{E}right)$ be the graph obtained by taking the cartesian product of an infinite and connected graph $G=(V,E)$ and the set of integers $mathbb{Z}$. We choose a collection $mathcal{C}$ of finite connected subgraphs o
The existence (or not) of infinite clusters is explored for two stochastic models of intersecting line segments in $d ge 2$ dimensions. Salient features of the phase diagram are established in each case. The models are based on site percolation on ${
Consider Bernoulli bond percolation a locally finite, connected graph $G$ and let $p_{mathrm{cut}}$ be the threshold corresponding to a first-moment method lower bound. Kahn (textit{Electron. Comm. Probab. Volume 8, 184-187.} (2003)) constructed a co
We consider oriented long-range percolation on a graph with vertex set $mathbb{Z}^d times mathbb{Z}_+$ and directed edges of the form $langle (x,t), (x+y,t+1)rangle$, for $x,y$ in $mathbb{Z}^d$ and $t in mathbb{Z}_+$. Any edge of this form is open wi