ﻻ يوجد ملخص باللغة العربية
The existence (or not) of infinite clusters is explored for two stochastic models of intersecting line segments in $d ge 2$ dimensions. Salient features of the phase diagram are established in each case. The models are based on site percolation on ${mathbb Z}^d$ with parameter $pin (0,1]$. For each occupied site $v$, and for each of the $2d$ possible coordinate directions, declare the entire line segment from $v$ to the next occupied site in the given direction to be either blue or not blue according to a given stochastic rule. In the one-choice model, each occupied site declares one of its $2d$ incident segments to be blue. In the independent model, the states of different line segments are independent.
We study the independent alignment percolation model on $mathbb{Z}^d$ introduced by Beaton, Grimmett and Holmes [arXiv:1908.07203]. It is a model for random intersecting line segments defined as follows. First the sites of $mathbb{Z}^d$ are independe
We define a continuum percolation model that provides a collection of random ellipses on the plane and study the behavior of the covered set and the vacant set, the one obtained by removing all ellipses. Our model generalizes a construction that appe
We study bond percolation on the square lattice with one-dimensional inhomogeneities. Inhomogeneities are introduced in the following way: A vertical column on the square lattice is the set of vertical edges that project to the same vertex on $mathbb
We prove that the probability of crossing a large square in quenched Voronoi percolation converges to 1/2 at criticality, confirming a conjecture of Benjamini, Kalai and Schramm from 1999. The main new tools are a quenched version of the box-crossing
We study a dependent site percolation model on the $n$-dimensional Euclidean lattice where, instead of single sites, entire hyperplanes are removed independently at random. We extend the results about Bernoulli line percolation showing that the model