ﻻ يوجد ملخص باللغة العربية
Generalization, i.e., the ability of solving problem instances that are not available during the system design and development phase, is a critical goal for intelligent systems. A typical way to achieve good generalization is to learn a model from vast data. In the context of heuristic search, such a paradigm could be implemented as configuring the parameters of a parallel algorithm portfolio (PAP) based on a set of training problem instances, which is often referred to as PAP construction. However, compared to traditional machine learning, PAP construction often suffers from the lack of training instances, and the obtained PAPs may fail to generalize well. This paper proposes a novel competitive co-evolution scheme, named Co-Evolution of Parameterized Search (CEPS), as a remedy to this challenge. By co-evolving a configuration population and an instance population, CEPS is capable of obtaining generalizable PAPs with few training instances. The advantage of CEPS in improving generalization is analytically shown in this paper. Two concrete algorithms, namely CEPS-TSP and CEPS-VRPSPDTW, are presented for the Traveling Salesman Problem (TSP) and the Vehicle Routing Problem with Simultaneous Pickup-Delivery and Time Windows (VRPSPDTW), respectively. Experimental results show that CEPS has led to better generalization, and even managed to find new best-known solutions for some instances.
Generative adversarial networks (GANs) are pairs of artificial neural networks that are trained one against each other. The outputs from a generator are mixed with the real-world inputs to the discriminator and both networks are trained until an equi
Estimation of Distribution Algorithms have been proposed as a new paradigm for evolutionary optimization. This paper focuses on the parallelization of Estimation of Distribution Algorithms. More specifically, the paper discusses how to predict perfor
A boundary evolution Algorithm (BEA) is proposed by simultaneously taking into account the bottom and the high-level crossover and mutation, ie., the boundary of the hierarchical genetic algorithm. Operators and optimal individuals based on optional annealing are designed. Based on the numerou
Simultaneously utilizing several complementary solvers is a simple yet effective strategy for solving computationally hard problems. However, manually building such solver portfolios typically requires considerable domain knowledge and plenty of huma
As supercomputers continue to grow to exascale, the amount of data that needs to be saved or transmitted is exploding. To this end, many previous works have studied using error-bounded lossy compressors to reduce the data size and improve the I/O per