ﻻ يوجد ملخص باللغة العربية
Mapping magnetic fields is the key to resolving what remains an unclear physical picture of circumstellar magnetic fields in late-type evolved stars. Observations of linearly polarized emission from thermal molecular line transitions due to the Goldreich-Kylafis (G-K) effect provides valuable insight into the magnetic field geometry in these sources that is complementary to other key studies. In this paper, we present the detection of spectral-line polarization from both the thermal $J=2-1$ CO line and the $v=1, J=5-4$ SiO maser line toward two thermal-pulsating (TP-) AGB stars, R Crt and R Leo. The observed fractional linear polarization in the CO emission is measured as $m_lsim 3.1%$ and $m_lsim9.7%$ for R Crt and R Leo respectively. A circumstellar envelope (CSE) model profile and the associated parameters are estimated and used as input to a more detailed modeling of the predicted linear polarization expected from the G-K effect. The observed thermal line polarization level is consistent with the predicted results from the G-K model for R Crt; additional effects need to be considered for R Leo.
We present new interferometer molecular observations of R Leo taken at 1.2 mm with the Atacama Large Millimeter Array with an angular resolution up to ~0.026 arcsec. These observations permit us to resolve the innermost envelope of this star revealin
The CARMA 1.3 mm polarization system consists of dual-polarization receivers that are sensitive to right- (R) and left-circular (L) polarization, and a spectral-line correlator that measures all four cross polarizations (RR, LL, LR, RL) on each of th
Our current insights into the circumstellar chemistry of asymptotic giant branch (AGB) stars are largely based on studies of carbon-rich stars and stars with high mass-loss rates. In order to expand the current molecular inventory of evolved stars we
We report and analyse FIR observations of two Herbig Be stars, R Mon and PDS 27, obtained with Herschels instruments PACS and SPIRE. We construct SEDs and derive the infrared excess. We extract line fluxes from the PACS and SPIRE spectra and construc
The circumstellar ammonia (NH$_3$) chemistry in evolved stars is poorly understood. Previous observations and modelling showed that NH$_3$ abundance in oxygen-rich stars is several orders of magnitude above that predicted by equilibrium chemistry. In