ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep neural networks for the evaluation and design of photonic devices

99   0   0.0 ( 0 )
 نشر من قبل Jiaqi Jiang
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

The data sciences revolution is poised to transform the way photonic systems are simulated and designed. Photonics are in many ways an ideal substrate for machine learning: the objective of much of computational electromagnetics is the capture of non-linear relationships in high dimensional spaces, which is the core strength of neural networks. Additionally, the mainstream availability of Maxwell solvers makes the training and evaluation of neural networks broadly accessible and tailorable to specific problems. In this Review, we will show how deep neural networks, configured as discriminative networks, can learn from training sets and operate as high-speed surrogate electromagnetic solvers. We will also examine how deep generative networks can learn geometric features in device distributions and even be configured to serve as robust global optimizers. Fundamental data sciences concepts framed within the context of photonics will also be discussed, including the network training process, delineation of different network classes and architectures, and dimensionality reduction.



قيم البحث

اقرأ أيضاً

Wrist Fracture is the most common type of fracture with a high incidence rate. Conventional radiography (i.e. X-ray imaging) is used for wrist fracture detection routinely, but occasionally fracture delineation poses issues and an additional confirma tion by computed tomography (CT) is needed for diagnosis. Recent advances in the field of Deep Learning (DL), a subfield of Artificial Intelligence (AI), have shown that wrist fracture detection can be automated using Convolutional Neural Networks. However, previous studies did not pay close attention to the difficult cases which can only be confirmed via CT imaging. In this study, we have developed and analyzed a state-of-the-art DL-based pipeline for wrist (distal radius) fracture detection -- DeepWrist, and evaluated it against one general population test set, and one challenging test set comprising only cases requiring confirmation by CT. Our results reveal that a typical state-of-the-art approach, such as DeepWrist, while having a near-perfect performance on the general independent test set, has a substantially lower performance on the challenging test set -- average precision of 0.99 (0.99-0.99) vs 0.64 (0.46-0.83), respectively. Similarly, the area under the ROC curve was of 0.99 (0.98-0.99) vs 0.84 (0.72-0.93), respectively. Our findings highlight the importance of a meticulous analysis of DL-based models before clinical use, and unearth the need for more challenging settings for testing medical AI systems.
Histological classification of colorectal polyps plays a critical role in both screening for colorectal cancer and care of affected patients. An accurate and automated algorithm for the classification of colorectal polyps on digitized histopathology slides could benefit clinicians and patients. Evaluate the performance and assess the generalizability of a deep neural network for colorectal polyp classification on histopathology slide images using a multi-institutional dataset. In this study, we developed a deep neural network for classification of four major colorectal polyp types, tubular adenoma, tubulovillous/villous adenoma, hyperplastic polyp, and sessile serrated adenoma, based on digitized histopathology slides from our institution, Dartmouth-Hitchcock Medical Center (DHMC), in New Hampshire. We evaluated the deep neural network on an internal dataset of 157 histopathology slide images from DHMC, as well as on an external dataset of 238 histopathology slide images from 24 different institutions spanning 13 states in the United States. We measured accuracy, sensitivity, and specificity of our model in this evaluation and compared its performance to local pathologists diagnoses at the point-of-care retrieved from corresponding pathology laboratories. For the internal evaluation, the deep neural network had a mean accuracy of 93.5% (95% CI 89.6%-97.4%), compared with local pathologists accuracy of 91.4% (95% CI 87.0%-95.8%). On the external test set, the deep neural network achieved an accuracy of 87.0% (95% CI 82.7%-91.3%), comparable with local pathologists accuracy of 86.6% (95% CI 82.3%-90.9%). If confirmed in clinical settings, our model could assist pathologists by improving the diagnostic efficiency, reproducibility, and accuracy of colorectal cancer screenings.
In recent years, the development of nanophotonic devices has presented a revolutionary means to manipulate light at nanoscale. Recently, artificial neural networks (ANNs) have displayed powerful ability in the inverse design of nanophotonic devices. However, there is limited research on the inverse design for modeling and learning the sequence characteristics of a spectrum. In this work, we propose a novel deep learning method based on an improved recurrent neural networks to extract the sequence characteristics of a spectrum and achieve inverse design and spectrum prediction. A key feature of the network is that the memory or feedback loops it comprises allow it to effectively recognize time series data. In the context of nanorods hyperbolic metamaterials, we demonstrated the high consistency between the target spectrum and the predicted spectrum, and the network learned the deep physical relationship concerning the structural parameter changes reflected on the spectrum. Moreover, the proposed model is capable of predicting an unknown spectrum based on a known spectrum with only 0.32% mean relative error. We propose this method as an effective and accurate alternative to the application of ANNs in nanophotonics, paving way for fast and accurate design of desired devices.
Deep convolutional neural networks(CNNs) have been successful for a wide range of computer vision tasks, including image classification. A specific area of the application lies in digital pathology for pattern recognition in the tissue-based diagnosi s of gastrointestinal(GI) diseases. This domain can utilize CNNs to translate histopathological images into precise diagnostics. This is challenging since these complex biopsies are heterogeneous and require multiple levels of assessment. This is mainly due to structural similarities in different parts of the GI tract and shared features among different gut diseases. Addressing this problem with a flat model that assumes all classes (parts of the gut and their diseases) are equally difficult to distinguish leads to an inadequate assessment of each class. Since the hierarchical model restricts classification error to each sub-class, it leads to a more informative model than a flat model. In this paper, we propose to apply the hierarchical classification of biopsy images from different parts of the GI tract and the receptive diseases within each. We embedded a class hierarchy into the plain VGGNet to take advantage of its layers hierarchical structure. The proposed model was evaluated using an independent set of image patches from 373 whole slide images. The results indicate that the hierarchical model can achieve better results than the flat model for multi-category diagnosis of GI disorders using histopathological images.
Large prospective epidemiological studies acquire cardiovascular magnetic resonance (CMR) images for pre-symptomatic populations and follow these over time. To support this approach, fully automatic large-scale 3D analysis is essential. In this work, we propose a novel deep neural network using both CMR images and patient metadata to directly predict cardiac shape parameters. The proposed method uses the promising ability of statistical shape models to simplify shape complexity and variability together with the advantages of convolutional neural networks for the extraction of solid visual features. To the best of our knowledge, this is the first work that uses such an approach for 3D cardiac shape prediction. We validated our proposed CMR analytics method against a reference cohort containing 500 3D shapes of the cardiac ventricles. Our results show broadly significant agreement with the reference shapes in terms of the estimated volume of the cardiac ventricles, myocardial mass, 3D Dice, and mean and Hausdorff distance.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا