ﻻ يوجد ملخص باللغة العربية
The well-known counterintuitive phenomenon, where the combination of unfavorable situations can establish favorable ones, is called Parrondos paradox. Here, we study one-dimensional discrete-time quantum walks, manipulating two different coins (two-state) operators representing two losing games A and B, respectively, to create the Parrondo effect in the quantum domain. We exhibit that games A and B are losing games when played individually but could produce a winning expectation when played alternatively for a particular sequence of the different periods. Moreover, we also analyze the relationships between Parrondos games and quantum entanglement in our scheme. Along with the applications of different kinds of quantum walks, our outcomes potentially encourage the development of new quantum algorithms.
We study a series of one-dimensional discrete-time quantum-walk models labeled by half integers $j=1/2, 1, 3/2, ...$, introduced by Miyazaki {it et al.}, each of which the walkers wave function has $2j+1$ components and hopping range at each time ste
We outline a theory of symmetry protected topological phases of one-dimensional quantum walks. We assume spectral gaps around the symmetry-distinguished points +1 and -1, in which only discrete eigenvalues are allowed. The phase classification by int
We give a topological classification of quantum walks on an infinite 1D lattice, which obey one of the discrete symmetry groups of the tenfold way, have a gap around some eigenvalues at symmetry protected points, and satisfy a mild locality condition
Quantum state preparation in high-dimensional systems is an essential requirement for many quantum-technology applications. The engineering of an arbitrary quantum state is, however, typically strongly dependent on the experimental platform chosen fo
Quantum walk (QW) is the quantum analog of the random walk. QW is an integral part of the development of numerous quantum algorithms. Hence, an in-depth understanding of QW helps us to grasp the quantum algorithms. We revisit the one-dimensional disc