ﻻ يوجد ملخص باللغة العربية
Modern machine learning workloads use large models, with complex structures, that are very expensive to execute. The devices that execute complex models are becoming increasingly heterogeneous as we see a flourishing of domain-specific accelerators being offered as hardware accelerators in addition to CPUs. These trends necessitate distributing the workload across multiple devices. Recent work has shown that significant gains can be obtained with model parallelism, i.e, partitioning a neural networks computational graph onto multiple devices. In particular, this form of parallelism assumes a pipeline of devices, which is fed a stream of samples and yields high throughput for training and inference of DNNs. However, for such settings (large models and multiple heterogeneous devices), we require automated algorithms and toolchains that can partition the ML workload across devices. In this paper, we identify and isolate the structured optimization problem at the core of device placement of DNN operators, for both inference and training, especially in modern pipelined settings. We then provide algorithms that solve this problem to optimality. We demonstrate the applicability and efficiency of our approaches using several contemporary DNN computation graphs.
Many state-of-the-art ML results have been obtained by scaling up the number of parameters in existing models. However, parameters and activations for such large models often do not fit in the memory of a single accelerator device; this means that it
The predominant paradigm for using machine learning models on a device is to train a model in the cloud and perform inference using the trained model on the device. However, with increasing number of smart devices and improved hardware, there is inte
We consider strongly convex-concave minimax problems in the federated setting, where the communication constraint is the main bottleneck. When clients are arbitrarily heterogeneous, a simple Minibatch Mirror-prox achieves the best performance. As the
Since edge device failures (i.e., anomalies) seriously affect the production of industrial products in Industrial IoT (IIoT), accurately and timely detecting anomalies is becoming increasingly important. Furthermore, data collected by the edge device
Runtime and scalability of large neural networks can be significantly affected by the placement of operations in their dataflow graphs on suitable devices. With increasingly complex neural network architectures and heterogeneous device characteristic