ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning and Planning in Average-Reward Markov Decision Processes

93   0   0.0 ( 0 )
 نشر من قبل Abhishek Naik
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce learning and planning algorithms for average-reward MDPs, including 1) the first general proven-convergent off-policy model-free control algorithm without reference states, 2) the first proven-convergent off-policy model-free prediction algorithm, and 3) the first off-policy learning algorithm that converges to the actual value function rather than to the value function plus an offset. All of our algorithms are based on using the temporal-difference error rather than the conventional error when updating the estimate of the average reward. Our proof techniques are a slight generalization of those by Abounadi, Bertsekas, and Borkar (2001). In experiments with an Access-Control Queuing Task, we show some of the difficulties that can arise when using methods that rely on reference states and argue that our new algorithms can be significantly easier to use.



قيم البحث

اقرأ أيضاً

Model-free reinforcement learning is known to be memory and computation efficient and more amendable to large scale problems. In this paper, two model-free algorithms are introduced for learning infinite-horizon average-reward Markov Decision Process es (MDPs). The first algorithm reduces the problem to the discounted-reward version and achieves $mathcal{O}(T^{2/3})$ regret after $T$ steps, under the minimal assumption of weakly communicating MDPs. To our knowledge, this is the first model-free algorithm for general MDPs in this setting. The second algorithm makes use of recent advances in adaptive algorithms for adversarial multi-armed bandits and improves the regret to $mathcal{O}(sqrt{T})$, albeit with a stronger ergodic assumption. This result significantly improves over the $mathcal{O}(T^{3/4})$ regret achieved by the only existing model-free algorithm by Abbasi-Yadkori et al. (2019a) for ergodic MDPs in the infinite-horizon average-reward setting.
We consider the batch (off-line) policy learning problem in the infinite horizon Markov Decision Process. Motivated by mobile health applications, we focus on learning a policy that maximizes the long-term average reward. We propose a doubly robust e stimator for the average reward and show that it achieves semiparametric efficiency given multiple trajectories collected under some behavior policy. Based on the proposed estimator, we develop an optimization algorithm to compute the optimal policy in a parameterized stochastic policy class. The performance of the estimated policy is measured by the difference between the optimal average reward in the policy class and the average reward of the estimated policy and we establish a finite-sample regret guarantee. To the best of our knowledge, this is the first regret bound for batch policy learning in the infinite time horizon setting. The performance of the method is illustrated by simulation studies.
104 - Mridul Agarwal , Qinbo Bai , 2021
We consider the problem of constrained Markov Decision Process (CMDP) where an agent interacts with a unichain Markov Decision Process. At every interaction, the agent obtains a reward. Further, there are $K$ cost functions. The agent aims to maximiz e the long-term average reward while simultaneously keeping the $K$ long-term average costs lower than a certain threshold. In this paper, we propose CMDP-PSRL, a posterior sampling based algorithm using which the agent can learn optimal policies to interact with the CMDP. Further, for MDP with $S$ states, $A$ actions, and diameter $D$, we prove that following CMDP-PSRL algorithm, the agent can bound the regret of not accumulating rewards from optimal policy by $Tilde{O}(poly(DSA)sqrt{T})$. Further, we show that the violations for any of the $K$ constraints is also bounded by $Tilde{O}(poly(DSA)sqrt{T})$. To the best of our knowledge, this is the first work which obtains a $Tilde{O}(sqrt{T})$ regret bounds for ergodic MDPs with long-term average constraints.
In this paper we present a novel method for learning hierarchical representations of Markov decision processes. Our method works by partitioning the state space into subsets, and defines subtasks for performing transitions between the partitions. We formulate the problem of partitioning the state space as an optimization problem that can be solved using gradient descent given a set of sampled trajectories, making our method suitable for high-dimensional problems with large state spaces. We empirically validate the method, by showing that it can successfully learn a useful hierarchical representation in a navigation domain. Once learned, the hierarchical representation can be used to solve different tasks in the given domain, thus generalizing knowledge across tasks.
66 - Roy Fox 2016
Bounded agents are limited by intrinsic constraints on their ability to process information that is available in their sensors and memory and choose actions and memory updates. In this dissertation, we model these constraints as information-rate cons traints on communication channels connecting these various internal components of the agent. We make four major contributions detailed below and many smaller contributions detailed in each section. First, we formulate the problem of optimizing the agent under both extrinsic and intrinsic constraints and develop the main tools for solving it. Second, we identify another reason for the challenging convergence properties of the optimization algorithm, which is the bifurcation structure of the update operator near phase transitions. Third, we study the special case of linear-Gaussian dynamics and quadratic cost (LQG), where the optimal solution has a particularly simple and solvable form. Fourth, we explore the learning task, where the model of the world dynamics is unknown and sample-based updates are used instead.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا