ترغب بنشر مسار تعليمي؟ اضغط هنا

High-precision distance measurements with classical pulsating stars

61   0   0.0 ( 0 )
 نشر من قبل Anupam Bhardwaj
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Anupam Bhardwaj




اسأل ChatGPT حول البحث

Classical Cepheid and RR Lyrae variables are radially pulsating stars that trace young and old-age stellar populations, respectively. These classical pulsating stars are the most sensitive probes for the precision stellar astrophysics and the extragalactic distance measurements. Despite their extensive use as standard candles thanks to their well-defined Period-Luminosity relations, distance measurements based on these objects suffer from their absolute primary calibrations, metallicity effects, and other systematic uncertainties. Here, I present a review of classical Cepheid, RR Lyrae, and Type II Cepheid variables starting with a historical introduction and describing their basic evolutionary and pulsational properties. I will focus on recent theoretical and observational efforts to establish absolute scale for these standard candles at multiple wavelengths. The application of these classical pulsating stars to high-precision cosmic distance scale will be discussed along with observational systematics. I will summarize with an outlook for further improvements in our understanding of these classical pulsators in the upcoming era of extremely large telescopes.



قيم البحث

اقرأ أيضاً

High-precision (sigma < 0.01) new JHK observations of 226 of the brightest and nearest red clump stars in the solar neighbourhood are used to determine distance moduli for the LMC. The resulting K- and H-band values of 18.47pm0.02 and 18.49pm0.06 imp ly that any correction to the K-band Cepheid PL relation due to metallicity differences between Cepheids in the LMC and in the solar neighborhood must be quite small.
We report the detection of 388 pulsating variable stars (and some additional miscellaneous variables) in the Carina dSph galaxy over an area covering the full visible extent of the galaxy and extending a few times beyond its photometric (King) tidal radius along the direction of its major axis. Included in this total are 340 newly discovered dwarf Cepheids which are mostly located ~2.5 magnitudes below the horizontal branch and have very short periods (<0.1 days) typical of their class and consistent with their location on the upper part of the extended main sequence of the younger populations of the galaxy. Several extra-tidal dwarf cepheids were found in our survey up to a distance of ~1 degree from the center of Carina. Our sample also includes RR Lyrae stars and anomalous Cepheids some of which were found outside the galaxys tidal radius as well. This supports past works that suggests Carina is undergoing tidal disruption. We use the period-luminosity relationship for dwarf Cepheids to estimate a distance modulus of 20.17 +/- 0.10 mags, in very good agreement with the estimate from RR Lyrae stars. We find some important differences in the properties of the dwarf Cepheids of Carina and those in Fornax and the LMC, the only extragalactic samples of dwarf Cepheids currently known. These differences may reflect a metallicity spread, depth along the line of sight and/or, different evolutionary paths of the dwarf Cepheid stars.
After an overview of general aspects of modelling the pulsation- convection interaction we present reasons why such simulations (in multidimensions) are needed but, at the same time, pose a considerable challenge. We then discuss, for several topics, what insights multidimensional simulations have either already provided or can be expected to yield in the future. We finally discuss properties of our ANTARES code. Many of these features can be expected to be characteristic of other codes which may possibly be applied to these physical questions in the foreseeable future.
Extremely metal-poor stars provide us with indirect information on the first generations of massive stars. The TOPoS survey has been designed to increase the census of these stars and to provide a chemical inventory that is as detailed as possible. S even of the most iron-poor stars have been observed with the UVES spectrograph at the ESO VLT Kueyen 8.2m telescope to refine their chemical composition. We analysed the spectra based on 1D LTE model atmospheres, but also used 3D hydrodynamical simulations of stellar atmospheres. We measured carbon in six of the seven stars: all are carbon-enhanced and belong to the low-carbon band, defined in the TOPoS II paper. We measured lithium (A(Li)=1.9) in the most iron-poor star (SDSS J1035+0641, [Fe/H] < -5.2 ). We were also able to measure Li in three stars at [Fe/H]~ -4.0, two of which lie on the Spite plateau. We confirm that SDSS J1349+1407 is extremely rich in Mg, but not in Ca. It is also very rich in Na. Several of our stars are characterised by low alpha-to-iron ratios. The lack of high-carbon band stars at low metallicity can be understood in terms of evolutionary timescales of binary systems. The detection of Li in SDSS J1035+0641 places a strong constraint on theories that aim at solving the cosmological lithium problem. The Li abundance of the two warmer stars at [Fe/H]~ -4.0 places them on the Spite plateau, while the third, cooler star, lies below. We argue that this suggests that the temperature at which Li depletion begins increases with decreasing [Fe/H]. SDSS J1349+1407 may belong to a class of Mg-rich EMP stars. We cannot assess if there is a scatter in alpha-to-iron ratios among the EMP stars or if there are several discrete populations. However, the existence of stars with low alpha-to-iron ratios is supported by our observations.
We present the results of a precise near-infrared (NIR) radial velocity (RV) survey of 32 low-mass stars with spectral types K2-M4 using CSHELL at the NASA IRTF in the $K$-band with an isotopologue methane gas cell to achieve wavelength calibration a nd a novel iterative RV extraction method. We surveyed 14 members of young ($approx$ 25-150 Myr) moving groups, the young field star $varepsilon$ Eridani as well as 18 nearby ($<$ 25 pc) low-mass stars and achieved typical single-measurement precisions of 8-15 m s$^{-1}$ with a long-term stability of 15-50 m s$^{-1}$. We obtain the best NIR RV constraints to date on 27 targets in our sample, 19 of which were never followed by high-precision RV surveys. Our results indicate that very active stars can display long-term RV variations as low as $sim$ 25-50 m s$^{-1}$ at $approx$ 2.3125 $mu$m, thus constraining the effect of jitter at these wavelengths. We provide the first multi-wavelength confirmation of GJ 876 bc and independently retrieve orbital parameters consistent with previous studies. We recovered RV variability for HD 160934 AB and GJ 725 AB that are consistent with their known binary orbits, and nine other targets are candidate RV variables with a statistical significance of 3-5$sigma$. Our method combined with the new iSHELL spectrograph will yield long-term RV precisions of $lesssim$ 5 m s$^{-1}$ in the NIR, which will allow the detection of Super-Earths near the habitable zone of mid-M dwarfs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا