ترغب بنشر مسار تعليمي؟ اضغط هنا

Multidimensional modelling of classical pulsating stars

57   0   0.0 ( 0 )
 نشر من قبل Herbert Muthsam
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

After an overview of general aspects of modelling the pulsation- convection interaction we present reasons why such simulations (in multidimensions) are needed but, at the same time, pose a considerable challenge. We then discuss, for several topics, what insights multidimensional simulations have either already provided or can be expected to yield in the future. We finally discuss properties of our ANTARES code. Many of these features can be expected to be characteristic of other codes which may possibly be applied to these physical questions in the foreseeable future.



قيم البحث

اقرأ أيضاً

60 - Anupam Bhardwaj 2020
Classical Cepheid and RR Lyrae variables are radially pulsating stars that trace young and old-age stellar populations, respectively. These classical pulsating stars are the most sensitive probes for the precision stellar astrophysics and the extraga lactic distance measurements. Despite their extensive use as standard candles thanks to their well-defined Period-Luminosity relations, distance measurements based on these objects suffer from their absolute primary calibrations, metallicity effects, and other systematic uncertainties. Here, I present a review of classical Cepheid, RR Lyrae, and Type II Cepheid variables starting with a historical introduction and describing their basic evolutionary and pulsational properties. I will focus on recent theoretical and observational efforts to establish absolute scale for these standard candles at multiple wavelengths. The application of these classical pulsating stars to high-precision cosmic distance scale will be discussed along with observational systematics. I will summarize with an outlook for further improvements in our understanding of these classical pulsators in the upcoming era of extremely large telescopes.
115 - Simon Bruderer 2009
Observations of the high-mass star forming region AFGL 2591 reveal a large abundance of CO+, a molecule known to be enhanced by far UV (FUV) and X-ray irradiation. In chemical models assuming a spherically symmetric envelope, the volume of gas irradi ated by protostellar FUV radiation is very small due to the high extinction by dust. The abundance of CO+ is thus underpredicted by orders of magnitude. In a more realistic model, FUV photons can escape through an outflow region and irradiate gas at the border to the envelope. Thus, we introduce the first 2D axi-symmetric chemical model of the envelope of a high-mass star forming region to explain the CO+ observations as a prototypical FUV tracer. The model assumes an axi-symmetric power-law density structure with a cavity due to the outflow. The local FUV flux is calculated by a Monte Carlo radiative transfer code taking scattering on dust into account. A grid of precalculated chemical abundances, introduced in the first part of this series of papers, is used to quickly interpolate chemical abundances. This approach allows to calculate the temperature structure of the FUV heated outflow walls self-consistently with the chemistry. Synthetic maps of the line flux are calculated using a raytracer code. Single-dish and interferometric observations are simulated and the model results are compared to published and new JCMT and SMA observations. The two-dimensional model of AFGL 2591 is able to reproduce the JCMT single-dish observations and also explains the non-detection by the SMA. We conclude that the observed CO+ line flux and its narrow width can be interpreted by emission from the warm and dense outflow walls irradiated by protostellar FUV radiation.
We have studied over 1600 Am stars at a photometric precision of 1 mmag with SuperWASP photometric data. Contrary to previous belief, we find that around 200 Am stars are pulsating delta Sct and gamma Dor stars, with low amplitudes that have been mis sed in previous, less extensive studies. While the amplitudes are generally low, the presence of pulsation in Am stars places a strong constraint on atmospheric convection, and may require the pulsation to be laminar. While some pulsating Am stars have been previously found to be delta Sct stars, the vast majority of Am stars known to pulsate are presented in this paper. They will form the basis of future statistical studies of pulsation in the presence of atomic diffusion.
The recently launched NASA Transiting Exoplanet Survey Satellite (TESS) mission is going to collect lightcurves for a few hundred million of stars and we expect to increase the number of pulsating stars to analyze compared to the few thousand stars o bserved by the CoRoT, $textit{Kepler}$ and K2 missions. However, most of the TESS targets have not yet been properly classified and characterized. In order to improve the analysis of the TESS data, it is crucial to determine the type of stellar pulsations in a timely manner. We propose an automatic method to classify stars attending to their pulsation properties, in particular, to identify solar-like pulsators among all TESS targets. It relies on the use of the global amount of power contained in the power spectrum (already known as the FliPer method) as a key parameter, along with the effective temperature, to feed into a machine learning classifier. Our study, based on TESS simulated datasets, shows that we are able to classify pulsators with a $98%$ accuracy.
At present, a large number of pulsating white dwarf (WD) stars is being discovered either from Earth-based surveys such as the Sloan Digital Sky Survey, or through observations from space (e.g., the Kepler mission). The asteroseismological techniques allow us to infer details of internal chemical stratification, the total mass, and even the stellar rotation profile. In this paper, we first describe the basic properties of WD stars and their pulsations, as well as the different sub-types of these variables known so far. Subsequently, we describe some recent findings about pulsating low-mass WDs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا