ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Iteration Complexity of Hypergradient Computation

75   0   0.0 ( 0 )
 نشر من قبل Riccardo Grazzi
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

We study a general class of bilevel problems, consisting in the minimization of an upper-level objective which depends on the solution to a parametric fixed-point equation. Important instances arising in machine learning include hyperparameter optimization, meta-learning, and certain graph and recurrent neural networks. Typically the gradient of the upper-level objective (hypergradient) is hard or even impossible to compute exactly, which has raised the interest in approximation methods. We investigate some popular approaches to compute the hypergradient, based on reverse mode iterative differentiation and approximate implicit differentiation. Under the hypothesis that the fixed point equation is defined by a contraction mapping, we present a unified analysis which allows for the first time to quantitatively compare these methods, providing explicit bounds for their iteration complexity. This analysis suggests a hierarchy in terms of computational efficiency among the above methods, with approximate implicit differentiation based on conjugate gradient performing best. We present an extensive experimental comparison among the methods which confirm the theoretical findings.



قيم البحث

اقرأ أيضاً

We consider the theory of regression on a manifold using reproducing kernel Hilbert space methods. Manifold models arise in a wide variety of modern machine learning problems, and our goal is to help understand the effectiveness of various implicit a nd explicit dimensionality-reduction methods that exploit manifold structure. Our first key contribution is to establish a novel nonasymptotic version of the Weyl law from differential geometry. From this we are able to show that certain spaces of smooth functions on a manifold are effectively finite-dimensional, with a complexity that scales according to the manifold dimension rather than any ambient data dimension. Finally, we show that given (potentially noisy) function values taken uniformly at random over a manifold, a kernel regression estimator (derived from the spectral decomposition of the manifold) yields minimax-optimal error bounds that are controlled by the effective dimension.
Recently there has been a surge of interest in understanding implicit regularization properties of iterative gradient-based optimization algorithms. In this paper, we study the statistical guarantees on the excess risk achieved by early-stopped uncon strained mirror descent algorithms applied to the unregularized empirical risk with the squared loss for linear models and kernel methods. By completing an inequality that characterizes convexity for the squared loss, we identify an intrinsic link between offset Rademacher complexities and potential-based convergence analysis of mirror descent methods. Our observation immediately yields excess risk guarantees for the path traced by the iterates of mirror descent in terms of offset complexities of certain function classes depending only on the choice of the mirror map, initialization point, step-size, and the number of iterations. We apply our theory to recover, in a clean and elegant manner via rather short proofs, some of the recent results in the implicit regularization literature, while also showing how to improve upon them in some settings.
There are many methods developed to approximate a cloud of vectors embedded in high-dimensional space by simpler objects: starting from principal points and linear manifolds to self-organizing maps, neural gas, elastic maps, various types of principa l curves and principal trees, and so on. For each type of approximators the measure of the approximator complexity was developed too. These measures are necessary to find the balance between accuracy and complexity and to define the optimal approximations of a given type. We propose a measure of complexity (geometrical complexity) which is applicable to approximators of several types and which allows comparing data approximations of different types.
Our goal is to enable machine learning systems to be trained interactively. This requires models that perform well and train quickly, without large amounts of hand-labeled data. We take a step forward in this direction by borrowing from weak supervis ion (WS), wherein models can be trained with noisy sources of signal instead of hand-labeled data. But WS relies on training downstream deep networks to extrapolate to unseen data points, which can take hours or days. Pre-trained embeddings can remove this requirement. We do not use the embeddings as features as in transfer learning (TL), which requires fine-tuning for high performance, but instead use them to define a distance function on the data and extend WS source votes to nearby points. Theoretically, we provide a series of results studying how performance scales with changes in source coverage, source accuracy, and the Lipschitzness of label distributions in the embedding space, and compare this rate to standard WS without extension and TL without fine-tuning. On six benchmark NLP and video tasks, our method outperforms WS without extension by 4.1 points, TL without fine-tuning by 12.8 points, and traditionally-supervised deep networks by 13.1 points, and comes within 0.7 points of state-of-the-art weakly-supervised deep networks-all while training in less than half a second.
Popular machine learning estimators involve regularization parameters that can be challenging to tune, and standard strategies rely on grid search for this task. In this paper, we revisit the techniques of approximating the regularization path up to predefined tolerance $epsilon$ in a unified framework and show that its complexity is $O(1/sqrt[d]{epsilon})$ for uniformly convex loss of order $d geq 2$ and $O(1/sqrt{epsilon})$ for Generalized Self-Concordant functions. This framework encompasses least-squares but also logistic regression, a case that as far as we know was not handled as precisely in previous works. We leverage our technique to provide refined bounds on the validation error as well as a practical algorithm for hyperparameter tuning. The latter has global convergence guarantee when targeting a prescribed accuracy on the validation set. Last but not least, our approach helps relieving the practitioner from the (often neglected) task of selecting a stopping criterion when optimizing over the training set: our method automatically calibrates this criterion based on the targeted accuracy on the validation set.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا