ترغب بنشر مسار تعليمي؟ اضغط هنا

Decorrelated Clustering with Data Selection Bias

116   0   0.0 ( 0 )
 نشر من قبل Shaohua Fan
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Most of existing clustering algorithms are proposed without considering the selection bias in data. In many real applications, however, one cannot guarantee the data is unbiased. Selection bias might bring the unexpected correlation between features and ignoring those unexpected correlations will hurt the performance of clustering algorithms. Therefore, how to remove those unexpected correlations induced by selection bias is extremely important yet largely unexplored for clustering. In this paper, we propose a novel Decorrelation regularized K-Means algorithm (DCKM) for clustering with data selection bias. Specifically, the decorrelation regularizer aims to learn the global sample weights which are capable of balancing the sample distribution, so as to remove unexpected correlations among features. Meanwhile, the learned weights are combined with k-means, which makes the reweighted k-means cluster on the inherent data distribution without unexpected correlation influence. Moreover, we derive the updating rules to effectively infer the parameters in DCKM. Extensive experiments results on real world datasets well demonstrate that our DCKM algorithm achieves significant performance gains, indicating the necessity of removing unexpected feature correlations induced by selection bias when clustering.

قيم البحث

اقرأ أيضاً

This paper studies clustering of data sequences using the k-medoids algorithm. All the data sequences are assumed to be generated from emph{unknown} continuous distributions, which form clusters with each cluster containing a composite set of closely located distributions (based on a certain distance metric between distributions). The maximum intra-cluster distance is assumed to be smaller than the minimum inter-cluster distance, and both values are assumed to be known. The goal is to group the data sequences together if their underlying generative distributions (which are unknown) belong to one cluster. Distribution distance metrics based k-medoids algorithms are proposed for known and unknown number of distribution clusters. Upper bounds on the error probability and convergence results in the large sample regime are also provided. It is shown that the error probability decays exponentially fast as the number of samples in each data sequence goes to infinity. The error exponent has a simple form regardless of the distance metric applied when certain conditions are satisfied. In particular, the error exponent is characterized when either the Kolmogrov-Smirnov distance or the maximum mean discrepancy are used as the distance metric. Simulation results are provided to validate the analysis.
Clustering is one of the most common unsupervised learning tasks in machine learning and data mining. Clustering algorithms have been used in a plethora of applications across several scientific fields. However, there has been limited research in the clustering of point patterns - sets or multi-sets of unordered elements - that are found in numerous applications and data sources. In this paper, we propose two approaches for clustering point patterns. The first is a non-parametric method based on novel distances for sets. The second is a model-based approach, formulated via random finite set theory, and solved by the Expectation-Maximization algorithm. Numerical experiments show that the proposed methods perform well on both simulated and real data.
154 - Jianguo Chen , Philip S. Yu 2019
As one type of efficient unsupervised learning methods, clustering algorithms have been widely used in data mining and knowledge discovery with noticeable advantages. However, clustering algorithms based on density peak have limited clustering effect on data with varying density distribution (VDD), equilibrium distribution (ED), and multiple domain-density maximums (MDDM), leading to the problems of sparse cluster loss and cluster fragmentation. To address these problems, we propose a Domain-Adaptive Density Clustering (DADC) algorithm, which consists of three steps: domain-adaptive density measurement, cluster center self-identification, and cluster self-ensemble. For data with VDD features, clusters in sparse regions are often neglected by using uniform density peak thresholds, which results in the loss of sparse clusters. We define a domain-adaptive density measurement method based on K-Nearest Neighbors (KNN) to adaptively detect the density peaks of different density regions. We treat each data point and its KNN neighborhood as a subgroup to better reflect its density distribution in a domain view. In addition, for data with ED or MDDM features, a large number of density peaks with similar values can be identified, which results in cluster fragmentation. We propose a cluster center self-identification and cluster self-ensemble method to automatically extract the initial cluster centers and merge the fragmented clusters. Experimental results demonstrate that compared with other comparative algorithms, the proposed DADC algorithm can obtain more reasonable clustering results on data with VDD, ED and MDDM features. Benefitting from a few parameter requirements and non-iterative nature, DADC achieves low computational complexity and is suitable for large-scale data clustering.
Highly overparametrized neural networks can display curiously strong generalization performance - a phenomenon that has recently garnered a wealth of theoretical and empirical research in order to better understand it. In contrast to most previous wo rk, which typically considers the performance as a function of the model size, in this paper we empirically study the generalization performance as the size of the training set varies over multiple orders of magnitude. These systematic experiments lead to some interesting and potentially very useful observations; perhaps most notably that training on smaller subsets of the data can lead to more reliable model selection decisions whilst simultaneously enjoying smaller computational costs. Our experiments furthermore allow us to estimate Minimum Description Lengths for common datasets given modern neural network architectures, thereby paving the way for principled model selection taking into account Occams-razor.
This work draws inspiration from three important sources of research on dissimilarity-based clustering and intertwines those three threads into a consistent principled functorial theory of clustering. Those three are the overlapping clustering of Jar dine and Sibson, the functorial approach of Carlsson and M{e}moli to partition-based clustering, and the Isbell/Dress schools study of injective envelopes. Carlsson and M{e}moli introduce the idea of viewing clustering methods as functors from a category of metric spaces to a category of clusters, with functoriality subsuming many desirable properties. Our first series of results extends their theory of functorial clustering schemes to methods that allow overlapping clusters in the spirit of Jardine and Sibson. This obviates some of the unpleasant effects of chaining that occur, for example with single-linkage clustering. We prove an equivalence between these general overlapping clustering functors and projections of weight spaces to what we term clustering domains, by focusing on the order structure determined by the morphisms. As a specific application of this machinery, we are able to prove that there are no functorial projections to cut metrics, or even to tree metrics. Finally, although we focus less on the construction of clustering methods (clustering domains) derived from injective envelopes, we lay out some preliminary results, that hopefully will give a feel for how the third leg of the stool comes into play.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا