ﻻ يوجد ملخص باللغة العربية
Recursive marginal quantization (RMQ) allows the construction of optimal discrete grids for approximating solutions to stochastic differential equations in d-dimensions. Product Markovian quantization (PMQ) reduces this problem to d one-dimensional quantization problems by recursively constructing product quantizers, as opposed to a truly optimal quantizer. However, the standard Newton-Raphson method used in the PMQ algorithm suffers from numerical instabilities, inhibiting widespread adoption, especially for use in calibration. By directly specifying the random variable to be quantized at each time step, we show that PMQ, and RMQ in one dimension, can be expressed as standard vector quantization. This reformulation allows the application of the accelerated Lloyds algorithm in an adaptive and robust procedure. Furthermore, in the case of stochastic volatility models, we extend the PMQ algorithm by using higher-order updates for the volatility or variance process. We illustrate the technique for European options, using the Heston model, and more exotic products, using the SABR model.
In this paper we propose two efficient techniques which allow one to compute the price of American basket options. In particular, we consider a basket of assets that follow a multi-dimensional Black-Scholes dynamics. The proposed techniques, called G
Evaluating moving average options is a tough computational challenge for the energy and commodity market as the payoff of the option depends on the prices of a certain underlying observed on a moving window so, when a long window is considered, the p
We present an alternative formula to price European options through cosine series expansions, under models with a known characteristic function such as the Heston stochastic volatility model. It is more robust across strikes and as fast as the original COS method.
Product Quantization (PQ) has long been a mainstream for generating an exponentially large codebook at very low memory/time cost. Despite its success, PQ is still tricky for the decomposition of high-dimensional vector space, and the retraining of mo
Product quantization (PQ) is a widely used technique for ad-hoc retrieval. Recent studies propose supervised PQ, where the embedding and quantization models can be jointly trained with supervised learning. However, there is a lack of appropriate form