ترغب بنشر مسار تعليمي؟ اضغط هنا

Machine Learning for Pricing American Options in High-Dimensional Markovian and non-Markovian models

151   0   0.0 ( 0 )
 نشر من قبل Andrea Molent
 تاريخ النشر 2019
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we propose two efficient techniques which allow one to compute the price of American basket options. In particular, we consider a basket of assets that follow a multi-dimensional Black-Scholes dynamics. The proposed techniques, called GPR Tree (GRP-Tree) and GPR Exact Integration (GPR-EI), are both based on Machine Learning, exploited together with binomial trees or with a closed formula for integration. Moreover, these two methods solve the backward dynamic programming problem considering a Bermudan approximation of the American option. On the exercise dates, the value of the option is first computed as the maximum between the exercise value and the continuation value and then approximated by means of Gaussian Process Regression. The two methods mainly differ in the approach used to compute the continuation value: a single step of binomial tree or integration according to the probability density of the process. Numerical results show that these two methods are accurate and reliable in handling American options on very large baskets of assets. Moreover we also consider the rough Bergomi model, which provides stochastic volatility with memory. Despite this model is only bidimensional, the whole history of the process impacts on the price, and handling all this information is not obvious at all. To this aim, we present how to adapt the GPR-Tree and GPR-EI methods and we focus on pricing American options in this non-Markovian framework.

قيم البحث

اقرأ أيضاً

In this paper we propose an efficient method to compute the price of multi-asset American options, based on Machine Learning, Monte Carlo simulations and variance reduction technique. Specifically, the options we consider are written on a basket of a ssets, each of them following a Black-Scholes dynamics. In the wake of Ludkovskis approach (2018), we implement here a backward dynamic programming algorithm which considers a finite number of uniformly distributed exercise dates. On these dates, the option value is computed as the maximum between the exercise value and the continuation value, which is obtained by means of Gaussian process regression technique and Monte Carlo simulations. Such a method performs well for low dimension baskets but it is not accurate for very high dimension baskets. In order to improve the dimension range, we employ the European option price as a control variate, which allows us to treat very large baskets and moreover to reduce the variance of price estimators. Numerical tests show that the proposed algorithm is fast and reliable, and it can handle also American options on very large baskets of assets, overcoming the problem of the curse of dimensionality.
Evaluating moving average options is a tough computational challenge for the energy and commodity market as the payoff of the option depends on the prices of a certain underlying observed on a moving window so, when a long window is considered, the p ricing problem becomes high dimensional. We present an efficient method for pricing Bermudan style moving average options, based on Gaussian Process Regression and Gauss-Hermite quadrature, thus named GPR-GHQ. Specifically, the proposed algorithm proceeds backward in time and, at each time-step, the continuation value is computed only in a few points by using Gauss-Hermite quadrature, and then it is learned through Gaussian Process Regression. We test the proposed approach in the Black-Scholes model, where the GPR-GHQ method is made even more efficient by exploiting the positive homogeneity of the continuation value, which allows one to reduce the problem size. Positive homogeneity is also exploited to develop a binomial Markov chain, which is able to deal efficiently with medium-long windows. Secondly, we test GPR-GHQ in the Clewlow-Strickland model, the reference framework for modeling prices of energy commodities. Finally, we consider a challenging problem which involves double non-Markovian feature, that is the rough-Bergomi model. In this case, the pricing problem is even harder since the whole history of the volatility process impacts the future distribution of the process. The manuscript includes a numerical investigation, which displays that GPR-GHQ is very accurate and it is able to handle options with a very long window, thus overcoming the problem of high dimensionality.
109 - Fabien Le Floch 2021
This paper presents the Runge-Kutta-Legendre finite difference scheme, allowing for an additional shift in its polynomial representation. A short presentation of the stability region, comparatively to the Runge-Kutta-Chebyshev scheme follows. We then explore the problem of pricing American options with the Runge-Kutta-Legendre scheme under the one factor Black-Scholes and the two factor Heston stochastic volatility models, as well as the pricing of butterfly spread and digital options under the uncertain volatility model, where a Hamilton-Jacobi-Bellman partial differential equation needs to be solved. We explore the order of convergence in these problems, as well as the option greeks stability, compared to the literature and popular schemes such as Crank-Nicolson, with Rannacher time-stepping.
An efficient compression technique based on hierarchical tensors for popular option pricing methods is presented. It is shown that the curse of dimensionality can be alleviated for the computation of Bermudan option prices with the Monte Carlo least- squares approach as well as the dual martingale method, both using high-dimensional tensorized polynomial expansions. This discretization allows for a simple and computationally cheap evaluation of conditional expectations. Complexity estimates are provided as well as a description of the optimization procedures in the tensor train format. Numerical experiments illustrate the favourable accuracy of the proposed methods. The dynamical programming method yields results comparable to recent Neural Network based methods.
The main objective of this paper is to present an algorithm of pricing perpetual American put options with asset-dependent discounting. The value function of such an instrument can be described as begin{equation*} V^{omega}_{text{A}^{text{Put}}}(s) = sup_{tauinmathcal{T}} mathbb{E}_{s}[e^{-int_0^tau omega(S_w) dw} (K-S_tau)^{+}], end{equation*} where $mathcal{T}$ is a family of stopping times, $omega$ is a discount function and $mathbb{E}$ is an expectation taken with respect to a martingale measure. Moreover, we assume that the asset price process $S_t$ is a geometric Levy process with negative exponential jumps, i.e. $S_t = s e^{zeta t + sigma B_t - sum_{i=1}^{N_t} Y_i}$. The asset-dependent discounting is reflected in the $omega$ function, so this approach is a generalisation of the classic case when $omega$ is constant. It turns out that under certain conditions on the $omega$ function, the value function $V^{omega}_{text{A}^{text{Put}}}(s)$ is convex and can be represented in a closed form; see Al-Hadad and Palmowski (2021). We provide an option pricing algorithm in this scenario and we present exact calculations for the particular choices of $omega$ such that $V^{omega}_{text{A}^{text{Put}}}(s)$ takes a simplified form.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا