ترغب بنشر مسار تعليمي؟ اضغط هنا

Simplest random walk for approximating Robin boundary value problems and ergodic limits of reflected diffusions

74   0   0.0 ( 0 )
 نشر من قبل Michael Tretyakov
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A simple-to-implement weak-sense numerical method to approximate reflected stochastic differential equations (RSDEs) is proposed and analysed. It is proved that the method has the first order of weak convergence. Together with the Monte Carlo technique, it can be used to numerically solve linear parabolic and elliptic PDEs with Robin boundary condition. One of the key results of this paper is the use of the proposed method for computing ergodic limits, i.e. expectations with respect to the invariant law of RSDEs, both inside a domain in $mathbb{R}^{d}$ and on its boundary. This allows to efficiently sample from distributions with compact support. Both time-averaging and ensemble-averaging estimators are considered and analysed. A number of extensions are considered including a second-order weak approximation, the case of arbitrary oblique direction of reflection, and a new adaptive weak scheme to solve a Poisson PDE with Neumann boundary condition. The presented theoretical results are supported by several numerical experiments.



قيم البحث

اقرأ أيضاً

147 - Limin Ma 2020
In this paper, we present a unified analysis of the superconvergence property for a large class of mixed discontinuous Galerkin methods. This analysis applies to both the Poisson equation and linear elasticity problems with symmetric stress formulati ons. Based on this result, some locally postprocess schemes are employed to improve the accuracy of displacement by order min(k+1, 2) if polynomials of degree k are employed for displacement. Some numerical experiments are carried out to validate the theoretical results.
We consider stochastic differential equations driven by a general Levy processes (SDEs) with infinite activity and the related, via the Feynman-Kac formula, Dirichlet problem for parabolic integro-differential equation (PIDE). We approximate the solu tion of PIDE using a numerical method for the SDEs. The method is based on three ingredients: (i) we approximate small jumps by a diffusion; (ii) we use restricted jump-adaptive time-stepping; and (iii) between the jumps we exploit a weak Euler approximation. We prove weak convergence of the considered algorithm and present an in-depth analysis of how its error and computational cost depend on the jump activity level. Results of some numerical experiments, including pricing of barrier basket currency options, are presented.
118 - Taiga Nakano , Xuefeng Liu 2021
Many practical problems occur due to the boundary value problem. This paper evaluates the finite element solution of the boundary value problem of Poissons equation and proposes a novel a posteriori local error estimation based on the Hypercircle met hod. Compared to the existing literature on qualitative error estimation, the proposed error estimation provides an explicit and sharp bound for the approximation error in the subdomain of interest and is applicable to problems without the $H^2$ regularity. The efficiency of the proposed method is demonstrated by numerical experiments for both convex and non-convex 2D domains.
Discrete approximations to the equation begin{equation*} L_{cont}u = u^{(4)} + D(x) u^{(3)} + A(x) u^{(2)} + (A(x)+H(x)) u^{(1)} + B(x) u = f, ; xin[0,1] end{equation*} are considered. This is an extension of the Sturm-Liouville case $D(x)equiv H(x )equiv 0$ [ M. Ben-Artzi, J.-P. Croisille, D. Fishelov and R. Katzir, Discrete fourth-order Sturm-Liouville problems, IMA J. Numer. Anal. {bf 38} (2018), 1485-1522. doi: 10.1093/imanum/drx038] to the non-self-adjoint setting. The natural boundary conditions in the Sturm-Liouville case are the values of the function and its derivative. The inclusion of a third-order discrete derivative entails a revision of the underlying discrete functional calculus. This revision forces evaluations of accurate discrete approximations to the boundary values of the second, third and fourth order derivatives. The resulting functional calculus provides the discrete analogs of the fundamental Sobolev properties--compactness and coercivity. It allows to obtain a general convergence theorem of the discrete approximations to the exact solution. Some representative numerical examples are presented.
240 - Jun Liu 2021
In this paper we proposed two new quasi-boundary value methods for regularizing the ill-posed backward heat conduction problems. With a standard finite difference discretization in space and time, the obtained all-at-once nonsymmetric sparse linear s ystems have the desired block $omega$-circulant structure, which can be utilized to design an efficient parallel-in-time (PinT) direct solver that built upon an explicit FFT-based diagonalization of the time discretization matrix. Convergence analysis is presented to justify the optimal choice of the regularization parameter. Numerical examples are reported to validate our analysis and illustrate the superior computational efficiency of our proposed PinT methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا