ﻻ يوجد ملخص باللغة العربية
In this paper we proposed two new quasi-boundary value methods for regularizing the ill-posed backward heat conduction problems. With a standard finite difference discretization in space and time, the obtained all-at-once nonsymmetric sparse linear systems have the desired block $omega$-circulant structure, which can be utilized to design an efficient parallel-in-time (PinT) direct solver that built upon an explicit FFT-based diagonalization of the time discretization matrix. Convergence analysis is presented to justify the optimal choice of the regularization parameter. Numerical examples are reported to validate our analysis and illustrate the superior computational efficiency of our proposed PinT methods.
In this paper, we present a unified analysis of the superconvergence property for a large class of mixed discontinuous Galerkin methods. This analysis applies to both the Poisson equation and linear elasticity problems with symmetric stress formulati
This paper presents a steady-state and transient heat conduction analysis framework using the polygonal scaled boundary finite element method (PSBFEM) with polygon/quadtree meshes. The PSBFEM is implemented with commercial finite element code Abaqus
This work focuses on the construction of a new class of fourth-order accurate methods for multirate time evolution of systems of ordinary differential equations. We base our work on the Recursive Flux Splitting Multirate (RFSMR) version of the Multir
Discrete variational methods have shown an excellent performance in numerical simulations of different mechanical systems. In this paper, we introduce an iterative method for discrete variational methods appropriate for boundary value problems. More
Parameter identification problems for partial differential equations are an important subclass of inverse problems. The parameter-to-state map, which maps the parameter of interest to the respective solution of the PDE or state of the system, plays t