ترغب بنشر مسار تعليمي؟ اضغط هنا

Design and Performance Analysis of a New STBC-MIMO LoRa System

64   0   0.0 ( 0 )
 نشر من قبل Huan Ma
 تاريخ النشر 2020
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

LoRa is a modulation technology for low power wide area networks (LPWAN) with enormous potential in 5G era. However, the performance of LoRa system deteriorates seriously in fading-channel environments. To tackle this problem, in this paper we introduce multiple-input-multiple-output (MIMO) configuration employing space-time block coding (STBC) schemes into the LoRa system to formulate an STBC-MIMO LoRa system. Then, we investigate the theoretical performance of the proposed system over Rayleigh fading channels. To this end, we derive the distribution of the decision metric for the demodulator in the proposed system. Based on the above distribution, we propose the closed-form approximated bit error rate (BER) expression of the proposed system when perfect and imperfect channel information states (CSIs) are considered. In addition, we analyze the diversity order of the proposed system. The result demonstrates that the diversity order of the system in the imperfect CSI scenario with fixed channel estimate error variance is zero. However, in the imperfect CSI scenario with a decreasing channel estimate error variance and the perfect CSI scenario, the system can achieve full diversity. Finally, experimental results verify the accuracy of the theoretical analysis and the excellent performance of the proposed system. Due to such superiority, the proposed STBC-MIMO LoRa system can be considered as a good scheme for LPWAN.

قيم البحث

اقرأ أيضاً

411 - Wenyang Xu , Guofa Cai , Yi Fang 2021
The conventional LoRa system is not able to sustain long-range communication over fading channels. To resolve the challenging issue, this paper investigates a two-hop opportunistic amplify-and-forward relaying LoRa system. Based on the best relay-sel ection protocol, the analytical and asymptotic bit error rate (BER), achievable diversity order, coverage probability, and throughput of the proposed system are derived over the Nakagamim fading channel. Simulative and numerical results show that although the proposed system reduces the throughput compared to the conventional LoRa system, it can significantly improve BER and coverage probability. Hence, the proposed system can be considered as a promising platform for low-power, long-range and highly reliable wireless-communication applications.
Reconfigurable intelligent surface (RIS) is a new paradigm that has great potential to achieve cost-effective, energy-efficient information modulation for wireless transmission, by the ability to change the reflection coefficients of the unit cells o f a programmable metasurface. Nevertheless, the electromagnetic responses of the RISs are usually only phase-adjustable, which considerably limits the achievable rate of RIS-based transmitters. In this paper, we propose an RIS architecture to achieve amplitude-and-phase-varying modulation, which facilitates the design of multiple-input multiple-output (MIMO) quadrature amplitude modulation (QAM) transmission. The hardware constraints of the RIS and their impacts on the system design are discussed and analyzed. Furthermore, the proposed approach is evaluated using our prototype which implements the RIS-based MIMO-QAM transmission over the air in real time.
Beamforming technology is widely used in millimeter wave systems to combat path losses, and beamformers are usually selected from a predefined codebook. Unfortunately, the traditional codebook design neglects the beam squint effect, and this will cau se severe performance degradation when the bandwidth is large. In this letter, we consider that a codebook with fixed size is adopted in the wideband beamforming system. First, we analyze how beam squint affects system performance when all beams have the same width. The expression of average spectrum efficiency is derived based on the ideal beam pattern. Next, we formulate the optimization problem to design the optimal codebook. Simulation results demonstrate that the proposed codebook deals with beam squint by spreading the beam coverage and significantly mitigates the performance degradation.
The requirement of high data-rate in the fifth generation wireless systems (5G) calls for the ultimate utilization of the wide bandwidth in the mmWave frequency band. Researchers seeking to compensate for mmWaves high path loss and to achieve both ga in and directivity have proposed that mmWave multiple-input multiple-output (MIMO) systems make use of beamforming systems. Hybrid beamforming in mmWave demonstrates promising performance in achieving high gain and directivity by using phase shifters at the analog processing block. What remains a problem, however, is the actual implementation of mmWave beamforming systems; to fabricate such a system is costly and complex. With the aim of reducing such cost and complexity, this article presents actual prototypes of the lens antenna as an effective device to be used in the future 5G mmWave hybrid beamforming systems. Using a lens as a passive phase shifter enables beamforming without the heavy network of active phase shifters, while gain and directivity are achieved by the energy-focusing property of the lens. Proposed in this article are two types of lens antennas, one for static and the other for mobile usage. Their performance is evaluated using measurements and simulation data along with link-level analysis via a software defined radio (SDR) platform. Results show the promising potential of the lens antenna for its high gain and directivity, and its improved beam-switching feasibility compared to when a lens is not used. System-level evaluations reveal the significant throughput enhancement in both real indoor and outdoor environments. Moreover, the lens antennas design issues are also discussed by evaluating different lens sizes.
In this paper, we investigate the uplink transmission performance of low-power wide-area (LPWA) networks with regards to coexisting radio modules. We adopt long range (LoRa) radio technique as an example of the network of focus even though our analys is can be easily extended to other situations. We exploit a new topology to model the network, where the node locations of LoRa follow a Poisson cluster process (PCP) while other coexisting radio modules follow a Poisson point process (PPP). Unlike most of the performance analysis based on stochastic geometry, we take noise into consideration. More specifically, two models, with a fixed and a random number of active LoRa nodes in each cluster, respectively, are considered. To obtain insights, both the exact and simple approximated expressions for coverage probability are derived. Based on them, area spectral efficiency and energy efficiency are obtained. From our analysis, we show how the performance of LPWA networks can be enhanced through adjusting the density of LoRa nodes around each LoRa receiver. Moreover, the simulation results unveil that the optimal number of active LoRa nodes in each cluster exists to maximize the area spectral efficiency.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا