ترغب بنشر مسار تعليمي؟ اضغط هنا

The mass scales of the Higgs field

40   0   0.0 ( 0 )
 نشر من قبل Leonardo Cosmai
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In the first version of the theory, with a classical scalar potential, the sector inducing SSB was distinct from the Higgs field interactions induced through its gauge and Yukawa couplings. We have adopted a similar perspective but, following most recent lattice simulations, described SSB in $lambdaPhi^4$ theory as a weak first-order phase transition. In this case, the resulting effective potential has two mass scales: i) a lower mass $m_h$, defined by its quadratic shape at the minima, ~and~ ii) a larger mass $M_h$, defined by the zero-point energy. These refer to different momentum scales in the propagator and are related by $M^2_hsim m^2_h ln (Lambda_s/M_h)$, where $Lambda_s$ is the ultraviolet cutoff of the scalar sector. We have checked this two-scale structure with lattice simulations of the propagator and of the susceptibility in the 4D Ising limit of the theory. These indicate that, in a cutoff theory where both $m_h$ and $M_h$ are finite, by increasing the energy, there could be a transition from a relatively low value, e.g. $m_h$=125 GeV, to a much larger $M_h$. The same lattice data give a final estimate $M_h= 720 pm 30 $ GeV which induces to re-consider the experimental situation at LHC. In particular an independent analysis of the ATLAS + CMS data indicating an excess in the 4-lepton channel as if there were a new scalar resonance around 700 GeV. Finally, the presence of two vastly different mass scales, requiring an interpolating form for the Higgs field propagator also in loop corrections, could reduce the discrepancy with those precise measurements which still favor large values of the Higgs particle mass.

قيم البحث

اقرأ أيضاً

In the original version of the theory, the driving mechanism for spontaneous symmetry breaking was identified in the pure scalar sector. However, this old idea requires a heavy Higgs particle that, after the discovery of the 125 GeV resonance, seems to be ruled out. We argue that this is not necessarily true. If the phase transition is weakly first order, as indicated by most recent lattice simulations, one should consider those approximation schemes that are in agreement with this scenario. Then, even in a simple one-component theory, it becomes natural to introduce two mass scales, say $M_h$ and $m_h$ with $m_h ll M_h$. This resembles the coexistence of phonons and rotons in superfluid helium-4, which is the non-relativistic analogue of the scalar condensate, and is potentially relevant for the Standard Model. In fact, vacuum stability would depend on $M_h$ and not on $m_h$ and be nearly insensitive to the other parameters of the theory (e.g. the top quark mass). By identifying $m_h=125$ GeV, and with our previous estimate from lattice simulations $M_h= 754 pm 20 ~rm{(stat)} pm 20 ~rm{(syst)}$ GeV, we thus get in touch with a recent, independent analysis of the ATLAS + CMS data which claims experimental evidence for a scalar resonance around $700$ GeV.
In the $SO(5) times U(1)$ gauge-Higgs unification in the Randall-Sundrum (RS) warped space the Higgs boson naturally becomes stable. The model is consistent with the current collider signatures only for a large warp factor $z_L > 10^{15}$ of the RS s pace. In order for stable Higgs bosons to explain the dark matter of the Universe the Higgs boson must have a mass $m_h = 70 sim 75$ GeV, which can be obtained in the non-SUSY model with $z_L sim 10^5$. We show that this discrepancy is resolved in supersymmetric gauge-Higgs unification where a stop mass is about $300 sim 320 $GeV and gauginos in the electroweak sector are light.
We study the off-shell production of the Higgs boson at the LHC to probe Higgs physics at higher energy scales utilizing the process $g g rightarrow h^{*} rightarrow ZZ$. We focus on the energy scale dependence of the off-shell Higgs propagation, and of the top quark Yukawa coupling, $y_t (Q^2)$. Extending our recent study in arXiv:1710.02149, we first discuss threshold effects in the Higgs propagator due to the existence of new states, such as a gauge singlet scalar portal, and a possible continuum of states in a conformal limit, both of which would be difficult to discover in other traditional searches. We then examine the modification of $y_t (Q^2)$ from its Standard Model (SM) prediction in terms of the renormalization group running of the top Yukawa, which could be significant in the presence of large flat extra-dimensions. Finally, we explore possible strongly coupled new physics in the top-Higgs sector that can lead to the appearance of a non-local $Q^2$-dependent form factor in the effective top-Higgs vertex. We find that considerable deviations compared to the SM prediction in the invariant mass distribution of the $Z$-boson pair can be conceivable, and may be probed at a $2sigma$-level at the high-luminosity 14 TeV HL-LHC for a new physics scale up to $mathcal{O}(1 {~rm TeV})$, and at the upgraded 27 TeV HE-LHC for a scale up to $mathcal{O}(3 {~rm TeV})$. For a few favorable scenarios, $5sigma$-level observation may be possible at the HE-LHC for a scale of about $mathcal{O}(1 {~rm TeV})$.
85 - Naritaka Oshita 2020
We investigate a vacuum decay around an over-spinning naked singularity by using the Israel junction condition. We found that if the Higgs field develops the second minimum at higher energy scale, a spinning small-mass naked singularity could cause t he vacuum decay around it within the cosmic age. An event horizon may form around the singularity due to the angular momentum transport from the singularity to a vacuum bubble wall. The newly formed event horizon leads to the increase of Bekenstein-Hawking entropy, which contributes to the enhancement of the vacuum decay rate. We conclude that small-mass naked singularities may be hidden by the event horizon within the cosmological time.
65 - J. Iliopoulos 2006
In the framework of the Standard Model the mass of the physical Higgs boson is an arbitrary parameter. In this note we examine whether it is possible to determine the ratio of $m_H /M$, where $M$ denotes any other mass in the theory, such as the $W$ or the $Z$-boson mass. We show that no such relation can be stable under renormalisation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا