ترغب بنشر مسار تعليمي؟ اضغط هنا

Two mass scales for the Higgs field?

43   0   0.0 ( 0 )
 نشر من قبل Leonardo Cosmai
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In the original version of the theory, the driving mechanism for spontaneous symmetry breaking was identified in the pure scalar sector. However, this old idea requires a heavy Higgs particle that, after the discovery of the 125 GeV resonance, seems to be ruled out. We argue that this is not necessarily true. If the phase transition is weakly first order, as indicated by most recent lattice simulations, one should consider those approximation schemes that are in agreement with this scenario. Then, even in a simple one-component theory, it becomes natural to introduce two mass scales, say $M_h$ and $m_h$ with $m_h ll M_h$. This resembles the coexistence of phonons and rotons in superfluid helium-4, which is the non-relativistic analogue of the scalar condensate, and is potentially relevant for the Standard Model. In fact, vacuum stability would depend on $M_h$ and not on $m_h$ and be nearly insensitive to the other parameters of the theory (e.g. the top quark mass). By identifying $m_h=125$ GeV, and with our previous estimate from lattice simulations $M_h= 754 pm 20 ~rm{(stat)} pm 20 ~rm{(syst)}$ GeV, we thus get in touch with a recent, independent analysis of the ATLAS + CMS data which claims experimental evidence for a scalar resonance around $700$ GeV.

قيم البحث

اقرأ أيضاً

In the first version of the theory, with a classical scalar potential, the sector inducing SSB was distinct from the Higgs field interactions induced through its gauge and Yukawa couplings. We have adopted a similar perspective but, following most re cent lattice simulations, described SSB in $lambdaPhi^4$ theory as a weak first-order phase transition. In this case, the resulting effective potential has two mass scales: i) a lower mass $m_h$, defined by its quadratic shape at the minima, ~and~ ii) a larger mass $M_h$, defined by the zero-point energy. These refer to different momentum scales in the propagator and are related by $M^2_hsim m^2_h ln (Lambda_s/M_h)$, where $Lambda_s$ is the ultraviolet cutoff of the scalar sector. We have checked this two-scale structure with lattice simulations of the propagator and of the susceptibility in the 4D Ising limit of the theory. These indicate that, in a cutoff theory where both $m_h$ and $M_h$ are finite, by increasing the energy, there could be a transition from a relatively low value, e.g. $m_h$=125 GeV, to a much larger $M_h$. The same lattice data give a final estimate $M_h= 720 pm 30 $ GeV which induces to re-consider the experimental situation at LHC. In particular an independent analysis of the ATLAS + CMS data indicating an excess in the 4-lepton channel as if there were a new scalar resonance around 700 GeV. Finally, the presence of two vastly different mass scales, requiring an interpolating form for the Higgs field propagator also in loop corrections, could reduce the discrepancy with those precise measurements which still favor large values of the Higgs particle mass.
We provide gauge/gravity dual descriptions of the strong coupling sector of composite Higgs models using insights from non-conformal examples of the AdS/CFT correspondence. We calculate particle masses and decay constants for proposed Sp(4) and SU(4) gauge theories, where there is the best lattice data for comparison. Our results compare favorably to lattice studies and go beyond those due to a greater flexibility in choosing the fermion content. That content changes the running dynamics and its choice can lead to sizable changes in the bound state masses. We describe top partners by a dual fermionic field in the bulk. Including suitable higher dimension operators can ensure a top mass consistent with the standard model.
We present the analytic computation of a family of non-planar master integrals which contribute to the two-loop scattering amplitudes for Higgs plus one jet production, with full heavy-quark mass dependence. These are relevant for the NNLO correction s to inclusive Higgs production and for the NLO corrections to Higgs production in association with a jet, in QCD. The computation of the integrals is performed with the method of differential equations. We provide a choice of basis for the polylogarithmic sectors, that puts the system of differential equations in canonical form. Solutions up to weight 2 are provided in terms of logarithms and dilogarithms, and 1-fold integral solutions are provided at weight 3 and 4. There are two elliptic sectors in the family, which are computed by solving their associated set of differential equations in terms of generalized power series. The resulting series may be truncated to obtain numerical results with high precision. The series solution renders the analytic continuation to the physical region straightforward. Moreover, we show how the series expansion method can be used to obtain accurate numerical results for all the master integrals of the family in all kinematic regions.
We study the off-shell production of the Higgs boson at the LHC to probe Higgs physics at higher energy scales utilizing the process $g g rightarrow h^{*} rightarrow ZZ$. We focus on the energy scale dependence of the off-shell Higgs propagation, and of the top quark Yukawa coupling, $y_t (Q^2)$. Extending our recent study in arXiv:1710.02149, we first discuss threshold effects in the Higgs propagator due to the existence of new states, such as a gauge singlet scalar portal, and a possible continuum of states in a conformal limit, both of which would be difficult to discover in other traditional searches. We then examine the modification of $y_t (Q^2)$ from its Standard Model (SM) prediction in terms of the renormalization group running of the top Yukawa, which could be significant in the presence of large flat extra-dimensions. Finally, we explore possible strongly coupled new physics in the top-Higgs sector that can lead to the appearance of a non-local $Q^2$-dependent form factor in the effective top-Higgs vertex. We find that considerable deviations compared to the SM prediction in the invariant mass distribution of the $Z$-boson pair can be conceivable, and may be probed at a $2sigma$-level at the high-luminosity 14 TeV HL-LHC for a new physics scale up to $mathcal{O}(1 {~rm TeV})$, and at the upgraded 27 TeV HE-LHC for a scale up to $mathcal{O}(3 {~rm TeV})$. For a few favorable scenarios, $5sigma$-level observation may be possible at the HE-LHC for a scale of about $mathcal{O}(1 {~rm TeV})$.
In the gauge-Higgs unification with multiple extra spaces, the Higgs self-coupling is of the order of $g^2$ and Higgs is predicted to be light, being consistent with the LHC results. When the gauge group is simple, the weak mixing angle is also predi ctable. We address a question whether there exists a model of gauge-Higgs unification in 6-dimensional space-time, which successfully predicts the mass ratios of the Higgs boson and weak gauge bosons. First, by use of a useful formula we give a general argument on the condition to get a realistic prediction of the weak mixing angle $sin^{2}theta_{W} = 1/4$, and find that triplet and sextet representations of the minimal SU(3) gauge group lead to the realistic prediction. Concerning the Higgs mass, we notice that in the models with one Higgs doublet, the predicted Higgs mass is always the same: $M_H = 2 M_W$. However, by extending our discussion to the models with two Higgs doublets, the situation changes: we obtain an interesting prediction $M_{H} leq 2M_{W}$ at the leading order of the perturbation. Thus it is possible to recover the observed Higgs mass, 125 GeV, for a suitable choice of the parameter. The situation is in clear contrast to the case of the minimal supersymmetric standard model, where $M_{H} leq M_{Z}$ at the classical level and the predicted Higgs mass cannot recover the observed value.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا