ﻻ يوجد ملخص باللغة العربية
The $beta^{-}$ decay of $^{81}$Zn to the neutron magic $N=50$ nucleus $^{81}$Ga, with only three valence protons with respect to $^{78}$Ni, was investigated. The study was performed at the ISOLDE facility at CERN by means of $gamma$ spectroscopy. The $^{81}$Zn half-life was determined to be $T_{1/2}=290(4)$ ms while the $beta$-delayed neutron emission probability was measured as $P_n=23(4)%$. The analysis of the $beta$-gated $gamma$-ray singles and $gamma$-$gamma$ coincidences from the decay of $^{81}$Zn provides 47 new levels and 70 new transitions in $^{81}$Ga. The $beta^-$$n$ decay of $^{81}$Zn was observed and a new decay scheme into the odd-odd $^{80}$Ga nucleus was established. The half-lives of the first and second excited states of $^{81}$Ga were measured via the fast-timing method using LaBr$_3$(Ce) detectors. The level scheme and transition rates are compared to large-scale shell-model calculations. The low-lying structure of $^{81}$Ga is interpreted in terms of the coupling of the three valence protons outside the doubly-magic $^{78}$Ni core.
We report the observation of a very exotic decay mode at the proton drip-line, the $beta$-delayed $gamma$-proton decay, clearly seen in the $beta$ decay of the $T_z$ = -2 nucleus $^{56}$Zn. Three $gamma$-proton sequences have been observed after the
The Gamow-Teller strength distribution of the decay of $^{186}$Hg into $^{186}$Au has been determined for the first time using the total absorption gamma spectroscopy technique and has been compared with theoretical QRPA calculations using the SLy4 S
Background: Shell evolution can impact the structure of the nuclei and lead to effects such as shape coexistence. The nuclei around $^{68}$Ni represent an excellent study case, however, spectroscopic information of the neutron-rich, $Z<28$ nuclei is
$^{48}$Ca, the lightest double beta decay candidate, is the only one simple enough to be treated exactly in the nuclear shell model. Thus, the $betabeta(2 u)$ half-life measurement, reported here, provides a unique test of the nuclear physics involve
Masses of the radioactive isotopes 62Ga, 62Zn and 62Cu have been measured at the JYFLTRAP facility with a relative precision of better than 18 ppb. A Q_EC value of (9181.07 +- 0.54) keV for the superallowed decay of 62Ga is obtained from the measured