ترغب بنشر مسار تعليمي؟ اضغط هنا

$beta^-$ decay study of the $^{66}$Mn - $^{66}$Fe - $^{66}$Co - $^{66}$Ni chain

63   0   0.0 ( 0 )
 نشر من قبل Marek Stryjczyk
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Background: Shell evolution can impact the structure of the nuclei and lead to effects such as shape coexistence. The nuclei around $^{68}$Ni represent an excellent study case, however, spectroscopic information of the neutron-rich, $Z<28$ nuclei is limited. Purpose: The goal is to measure $gamma$-ray transitions in $^{66}$Fe, $^{66}$Co and $^{66}$Ni populated in the $beta^-$ decay of $^{66}$Mn, to determine absolute $beta$-feedings and relative $gamma$-decay probabilities and to compare the results with Monte Carlo Shell Model calculations in order to study the influence of the relevant single neutron and proton orbitals occupancies around $Z=28$ and $N=40$. Method: The low-energy structures of $^{65,66}$Fe, $^{66}$Co and $^{66}$Ni were studied in the $beta^-$ decay of $^{66}$Mn produced at ISOLDE, CERN. The beam was purified by means of laser resonance ionization and mass separation. The $beta$ and $gamma$ events detected by three plastic scintillators and two MiniBall cluster germanium detectors, respectively, were correlated in time to build the low-energy excitation schemes and to determine the $beta$-decay half-lives of the nuclei. Results: The relative small $beta$-decay ground state feeding of $^{66}$Fe obtained in this work is at variant to the earlier studies. Spin and parity $1^+$ was assigned to the $^{66}$Co ground state based on the strong ground state feeding in the decay of $^{66}$Fe as well as in the decay of $^{66}$Co. Experimental log(ft) values, $gamma$-ray deexcitation patterns and energies of excited states were compared to Monte Carlo Shell Model calculations. Based on this comparison, spin and parity assignments for the selected number of low-lying states in the $^{66}$Mn to $^{66}$Ni chain were proposed. Conclusions: The $beta$-decay chain starting $^{66}$Mn towards $^{66}$Ni, crossing $N=40$, evolves from deformed nuclei to sphericity...

قيم البحث

اقرأ أيضاً

Candidates for three excited states in the 66^Se have been identified using the recoil-{beta} tagging method together with a veto detector for charged-particle evaporation channels. These results allow a comparison of mirror and triplet energy differ ences between analogue states across the A = 66 triplet as a function of angular momentum. The extracted triplet energy differences follow the negative trend observed in the f_7/2 shell. Shell-model calculations indicate a continued need for an additional isospin non-conserving interaction in addition to the Coulomb isotensor part as a function of mass.
Background: The influence of halo structure of $^6$He, $^8$B, $^{11}$Be and $^{11}$Li nuclei in several mechanisms such as direct reactions and fusion is already established, although not completely understood. The influence of the $^{10}$C Brunnian structure is less known. Purpose: To investigate the influence of the cluster configuration of $^{10}$C on the elastic scattering at an energy close to the Coulomb barrier. Methods: We present experimental data for the elastic scattering of the $^{10}$C+$^{208}$Pb system at $E_{rm lab}$ = 66 MeV. The data are compared to the three- and the four-body continuum-discretized coupled-channels calculations assuming $^9$B+$p$, $^6$Be+$alpha$ and $^8$Be+$p$+$p$ configurations. Results: The experimental angular distribution of the cross sections shows the suppression of the Fresnel peak that is reasonably well reproduced by the continuum-discretized coupled-channels calculations. However, the calculations underestimate the cross sections at backward angles. Couplings to continuum states represent a small effect. Conclusions: The cluster configurations of $^{10}$C assumed in the present work are able to describe some of the features of the data. In order to explain the data at backward angles, experimental data for the breakup and an extension of theoretical formalism towards a four-body cluster seem to be in need to reproduce the measured angular distribution.
We use a time-dependent hydrodynamic code and a non-LTE Monte Carlo code to model disk dissipation for the Be star 66 Ophiuchi. We compiled 63 years of observations from 1957 to 2020 to encompass the complete history of the growth and subsequent diss ipation of the stars disk. Our models are constrained by new and archival photometry, spectroscopy and polarization observations, allowing us to model the disk dissipation event. Using Markov chain Monte Carlo methods, we find 66 Oph is consistent with standard B2Ve stellar properties. We computed a grid of 61568 Be star disk models to constrain the density profile of the disk before dissipation using observations of the H$alpha$ line profile and SED. We find at the onset of dissipation the disk has a base density of $2.5times10^{-11} rm{g cm^{-3}}$ with a radial power-law index of $n=2.6$. Our models indicate that after 21 years of disk dissipation 66 Ophs outer disk remained present and bright in the radio. We find an isothermal disk with constant viscosity with an $alpha = 0.4$ and an outer disk radius of $sim$115 stellar radii best reproduces the rate of 66 Ophs disk dissipation. We determined the interstellar polarization in the direction of the star in the V-band is $p=0.63 pm 0.02%$ with a polarization position angle of $theta_{IS}approx85.7 pm 0.7^circ$. Using the Stokes QU diagram, we find the intrinsic polarization position angle of 66 Ophs disk is $theta_{int}approx98 pm 3^circ$.
126 - Celine Peroux 2001
We present high signal-to-noise, 5 A resolution (FWHM) spectra of 66 z ga 4 bright quasars obtained with the 4 m Cerro Tololo Inter-American Observatory and 4.2 m William Hershel telescopes. The primary goal of these observations was to undertake a n ew survey for intervening absorption systems detected in the spectra of background quasars. We look for both Lyman-limit systems (column densities N(HI) > 1.6 * 10^{17} atoms cm-2) and damped Ly-alpha systems (column densities N(HI) > 2 * 10^{20} atoms cm-2). This work resulted in the discovery of 49 Lyman-limit systems, 15 of which are within 3000 km s-1 of the quasar emission and thus might be associated with the quasar itself, 26 new damped Ly-alpha absorption candidates, 15 of which have z>3.5 and numerous metal absorption systems. In addition ten of the quasars presented here exhibit intrinsic broad absorption lines.
The reactor antineutrino anomaly might be explained by the oscillation of reactor antineutrinos toward a sterile neutrino of eV mass. In order to explore this hypothesis, the STEREO experiment measures the antineutrino energy spectrum in six differen t detector cells covering baselines between 9 and 11 m from the compact core of the ILL research reactor. In this Letter, results from 66 days of reactor turned on and 138 days of reactor turned off are reported. A novel method to extract the antineutrino rates has been developed based on the distribution of the pulse shape discrimination parameter. The test of a new oscillation toward a sterile neutrino is performed by comparing ratios of cells, independent of absolute normalization and of the prediction of the reactor spectrum. The results are found to be compatible with the null oscillation hypothesis and the best fit of the reactor antineutrino anomaly is excluded at 97.5% C.L.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا