ﻻ يوجد ملخص باللغة العربية
One of the risks derived from selling long term policies that any insurance company has, arises from interest rates. In this paper we consider a general class of stochastic volatility models written in forward variance form. We also deal with stochastic interest rates to obtain the risk-free price for unit-linked life insurance contracts, as well as providing a perfect hedging strategy by completing the market. We conclude with a simulation experiment, where we price unit-linked policies using Norwegian mortality rates. In addition we compare prices for the classical Black-Scholes model against the Heston stochastic volatility model with a Vasicek interest rate model.
This paper focuses on the pricing of the variance swap in an incomplete market where the stochastic interest rate and the price of the stock are respectively driven by Cox-Ingersoll-Ross model and Heston model with simultaneous L{e}vy jumps. By using
Valuing Guaranteed Minimum Withdrawal Benefit (GMWB) has attracted significant attention from both the academic field and real world financial markets. As remarked by Yang and Dai, the Black and Scholes framework seems to be inappropriate for such a
This paper considers exponential utility indifference pricing for a multidimensional non-traded assets model subject to inter-temporal default risk, and provides a semigroup approximation for the utility indifference price. The key tool is the splitt
In this paper we propose an extension of the Merton model. We apply the subdiffusive mechanism to analyze equity warrant in a fractional Brownian motion environment, when the short rate follows the subdiffusive fractional Black-Scholes model. We obta
The purpose of this paper is to analyze the problem of option pricing when the short rate follows subdiffusive fractional Merton model. We incorporate the stochastic nature of the short rate in our option valuation model and derive explicit formula f