ﻻ يوجد ملخص باللغة العربية
Bound electron-hole excitonic states are generally not expected to form with charges of negative effective mass. We identify such excitons in a single layer of the semiconductor WSe2, where they give rise to narrow-band upconverted photoluminescence in the UV, at an energy of 1.66 eV above the first band-edge excitonic transition. Negative band curvature and strong electron-phonon coupling result in a cascaded phonon progression with equidistant peaks in the photoluminescence spectrum, resolvable to ninth order. Ab initio GW-BSE calculations with full electron-hole correlations unmask and explain the admixture of upper conduction-band states to this complex many-body excitation: an optically bright, bound exciton in resonance with the semiconductor continuum. This exciton is responsible for atomic-like quantum-interference phenomena such as electromagnetically induced transparency. Since band curvature can be tuned by pressure or strain, synthesis of exotic quasiparticles such as flat-band excitons with infinite reduced mass becomes feasible.
Nanostructured semiconductors emit light from electronic states known as excitons[1]. According to Hunds rules[2], the lowest energy exciton in organic materials should be a poorly emitting triplet state. Analogously, the lowest exciton level in all
At low temperatures, in very clean two-dimensional (2D) samples the electron mean free path for collisions with static defects and phonons becomes greater than the sample width. Under this condition, the electron transport occurs by formation of a vi
An electric field that builds in the direction against current, known as negative nonlocal resistance, arises naturally in viscous flows and is thus often taken as a telltale of this regime. Here we predict negative resistance for the ballistic regim
Quantum dots are arguably one of the best platforms for optically accessible spin based qubits. The paramount demand of extended qubit storage time can be met by using quantum-dot-confined dark exciton: a longlived electron-hole pair with parallel sp
Excitons in alloyed nanowire quantum dots have unique spectra as shown here using atomistic calculations. The bright exciton splitting is triggered solely by alloying and despite cylindrical quantum dot shape reaches over $15~mu$eV, contrary to previ