ﻻ يوجد ملخص باللغة العربية
We examine morphology-separated color-mass diagrams to study the quenching of star formation in $sim 100,000$ ($zsim0$) Sloan Digital Sky Survey (SDSS) and $sim 20,000$ ($zsim1$) Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey (CANDELS) galaxies. To classify galaxies morphologically, we developed Galaxy Morphology Network (GaMorNet), a convolutional neural network that classifies galaxies according to their bulge-to-total light ratio. GaMorNet does not need a large training set of real data and can be applied to data sets with a range of signal-to-noise ratios and spatial resolutions. GaMorNets source code as well as the trained models are made public as part of this work ( http://www.astro.yale.edu/aghosh/gamornet.html ). We first trained GaMorNet on simulations of galaxies with a bulge and a disk component and then transfer learned using $sim25%$ of each data set to achieve misclassification rates of $lesssim5%$. The misclassified sample of galaxies is dominated by small galaxies with low signal-to-noise ratios. Using the GaMorNet classifications, we find that bulge- and disk-dominated galaxies have distinct color-mass diagrams, in agreement with previous studies. For both SDSS and CANDELS galaxies, disk-dominated galaxies peak in the blue cloud, across a broad range of masses, consistent with the slow exhaustion of star-forming gas with no rapid quenching. A small population of red disks is found at high mass ($sim14%$ of disks at $zsim0$ and $2%$ of disks at $z sim 1$). In contrast, bulge-dominated galaxies are mostly red, with much smaller numbers down toward the blue cloud, suggesting rapid quenching and fast evolution across the green valley. This inferred difference in quenching mechanism is in agreement with previous studies that used other morphology classification techniques on much smaller samples at $zsim0$ and $zsim1$.
We present visual-like morphologies over 16 photometric bands, from ultra-violet to near infrared, for 8,412 galaxies in the Cluster Lensing And Supernova survey with Hubble (CLASH) obtained by a convolutional neural network (CNN) model. Our model fo
The morphology and distribution of microcalcifications in a cluster are the most important characteristics for radiologists to diagnose breast cancer. However, it is time-consuming and difficult for radiologists to identify these characteristics, and
A fundamental feature of galaxies is their structure, yet we are just now understanding the evolution of structural properties in quantitative ways. As such, we explore the quantitative non-parametric structural evolution of 16,778 galaxies up to $zs
We present reduced data and data products from the 3D-HST survey, a 248-orbit HST Treasury program. The survey obtained WFC3 G141 grism spectroscopy in four of the five CANDELS fields: AEGIS, COSMOS, GOODS-S, and UDS, along with WFC3 $H_{140}$ imagin
We introduce a novel method for reconstructing the projected matter distributions of galaxy clusters with weak-lensing (WL) data based on convolutional neural network (CNN). Training datasets are generated with ray-tracing through cosmological simula