ﻻ يوجد ملخص باللغة العربية
While Bayesian Optimization (BO) is a very popular method for optimizing expensive black-box functions, it fails to leverage the experience of domain experts. This causes BO to waste function evaluations on bad design choices (e.g., machine learning hyperparameters) that the expert already knows to work poorly. To address this issue, we introduce Bayesian Optimization with a Prior for the Optimum (BOPrO). BOPrO allows users to inject their knowledge into the optimization process in the form of priors about which parts of the input space will yield the best performance, rather than BOs standard priors over functions, which are much less intuitive for users. BOPrO then combines these priors with BOs standard probabilistic model to form a pseudo-posterior used to select which points to evaluate next. We show that BOPrO is around 6.67x faster than state-of-the-art methods on a common suite of benchmarks, and achieves a new state-of-the-art performance on a real-world hardware design application. We also show that BOPrO converges faster even if the priors for the optimum are not entirely accurate and that it robustly recovers from misleading priors.
Variational dropout (VD) is a generalization of Gaussian dropout, which aims at inferring the posterior of network weights based on a log-uniform prior on them to learn these weights as well as dropout rate simultaneously. The log-uniform prior not o
How can we efficiently gather information to optimize an unknown function, when presented with multiple, mutually dependent information sources with different costs? For example, when optimizing a robotic system, intelligently trading off computer si
We introduce a new and rigorously-formulated PAC-Bayes few-shot meta-learning algorithm that implicitly learns a prior distribution of the model of interest. Our proposed method extends the PAC-Bayes framework from a single task setting to the few-sh
Developing efficient and principled neural architecture optimization methods is a critical challenge of modern deep learning. Recently, Liu et al.[19] proposed a splitting steepest descent (S2D) method that jointly optimizes the neural parameters and
Most existing black-box optimization methods assume that all variables in the system being optimized have equal cost and can change freely at each iteration. However, in many real world systems, inputs are passed through a sequence of different opera