ترغب بنشر مسار تعليمي؟ اضغط هنا

Rank-metric codes over arbitrary Galois extensions and rank analogues of Reed-Muller codes

75   0   0.0 ( 0 )
 نشر من قبل Alessandro Neri
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper extends the study of rank-metric codes in extension fields $mathbb{L}$ equipped with an arbitrary Galois group $G = mathrm{Gal}(mathbb{L}/mathbb{K})$. We propose a framework for studying these codes as subspaces of the group algebra $mathbb{L}[G]$, and we relate this point of view with usual notions of rank-metric codes in $mathbb{L}^N$ or in $mathbb{K}^{Ntimes N}$, where $N = [mathbb{L} : mathbb{K}]$. We then adapt the notion of error-correcting pairs to this context, in order to provide a non-trivial decoding algorithm for these codes. We then focus on the case where $G$ is abelian, which leads us to see codewords as elements of a multivariate skew polynomial ring. We prove that we can bound the dimension of the vector space of zeroes of these polynomials, depending of their degree. This result can be seen as an analogue of Alon-Furedi theorem -- and by means, of Schwartz-Zippel lemma -- in the rank metric. Finally, we construct the counterparts of Reed-Muller codes in the rank metric, and we give their parameters. We also show the connection between these codes and classical Reed-Muller codes in the case where $mathbb{L}$ is a Kummer extension.

قيم البحث

اقرأ أيضاً

The famous Barnes-Wall lattices can be obtained by applying Construction D to a chain of Reed-Muller codes. By applying Construction ${{D}}^{{(cyc)}}$ to a chain of extended cyclic codes sandwiched between Reed-Muller codes, Hu and Nebe (J. London Ma th. Soc. (2) 101 (2020) 1068-1089) constructed new series of universally strongly perfect lattices sandwiched between Barnes-Wall lattices. In this paper, we explicitly determine the minimum weight codewords of those codes for some special cases.
The well known Plotkin construction is, in the current paper, generalized and used to yield new families of Z2Z4-additive codes, whose length, dimension as well as minimum distance are studied. These new constructions enable us to obtain families of Z2Z4-additive codes such that, under the Gray map, the corresponding binary codes have the same parameters and properties as the usual binary linear Reed-Muller codes. Moreover, the first family is the usual binary linear Reed-Muller family.
New quaternary Plotkin constructions are given and are used to obtain new families of quaternary codes. The parameters of the obtained codes, such as the length, the dimension and the minimum distance are studied. Using these constructions new famili es of quaternary Reed-Muller codes are built with the peculiarity that after using the Gray map the obtained Z4-linear codes have the same parameters and fundamental properties as the codes in the usual binary linear Reed-Muller family. To make more evident the duality relationships in the constructed families the concept of Kronecker inner product is introduced.
This paper investigates the theory of sum-rank metric codes for which the individual matrix blocks may have different sizes. Various bounds on the cardinality of a code are derived, along with their asymptotic extensions. The duality theory of sum-ra nk metric codes is also explored, showing that MSRD codes (the sum-rank analogue of MDS codes) dualize to MSRD codes only if all matrix blocks have the same number of columns. In the latter case, duality considerations lead to an upper bound on the number of blocks for MSRD codes. The paper also contains various constructions of sum-rank metric codes for variable block sizes, illustrating the possible behaviours of these objects with respect to bounds, existence, and duality properties.
We derive simplified sphere-packing and Gilbert--Varshamov bounds for codes in the sum-rank metric, which can be computed more efficiently than previous ones. They give rise to asymptotic bounds that cover the asymptotic setting that has not yet been considered in the literature: families of sum-rank-metric codes whose block size grows in the code length. We also provide two genericity results: we show that random linear codes achieve almost the sum-rank-metric Gilbert--Varshamov bound with high probability. Furthermore, we derive bounds on the probability that a random linear code attains the sum-rank-metric Singleton bound, showing that for large enough extension fields, almost all linear codes achieve it.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا