ترغب بنشر مسار تعليمي؟ اضغط هنا

Novel mechanism for CMB modulation in the Standard Model

62   0   0.0 ( 0 )
 نشر من قبل Alexandros Karam Dr.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate that light spectator fields can source sizeable CMB anisotropies through modulated reheating even in the absence of direct couplings to the inflaton. The effect arises when the phase space of the inflaton decay is modulated by the spectator which generates masses for the decay products. We call the mechanism textit{indirect modulation} and show that it can source perturbations even four orders of magnitude larger than the observed. Importantly, the indirect mechanism is present in the Standard Model extended with right-handed neutrinos. For a minimally coupled Higgs boson this leads to a novel lower bound on the quartic coupling and constrains the neutrino Yukawas below unity.

قيم البحث

اقرأ أيضاً

We show that the leading coupling between a shift symmetric inflaton and the Standard Model fermions leads to an induced electroweak symmetry breaking due to particle production during inflation, and as a result, a unique oscillating feature in non-G aussianities. In this one parameter model, the enhanced production of Standard Model fermions dynamically generates a new electroweak symmetry breaking minimum, where the Higgs field classically rolls into. The production of fermions stops when the Higgs expectation value and hence the fermion masses become too large, suppressing fermion production. The balance between the above-mentioned effects gives the Standard Model fermions masses that are uniquely determined by their couplings to the inflaton. In particular, the heaviest Standard Model fermion, the top quark, can produce a distinct cosmological collider physics signature characterised by a one-to-one relation between amplitude and frequency of the oscillating signal, which is observable at future 21-cm surveys.
Thermal leptogenesis, in the framework of the standard model with three additional heavy Majorana neutrinos, provides an attractive scenario to explain the observed baryon asymmetry in the universe. It is based on the out-of-equilibrium decay of Majo rana neutrinos in a thermal bath of standard model particles, which in a fully quantum field theoretical formalism is obtained by solving Kadanoff-Baym equations. So far, the leading two-loop contributions from leptons and Higgs particles are included, but not yet gauge corrections. These enter at three-loop level but, in certain kinematical regimes, require a resummation to infinite loop order for a result to leading order in the gauge coupling. In this work, we apply such a resummation to the calculation of the lepton number density. The full result for the simplest vanilla leptogenesis scenario is by $mathcal{O}(1)$ increased compared to that of quantum Boltzmann equations, and for the first time permits an estimate of all theoretical uncertainties. This step completes the quantum theory of leptogenesis and forms the basis for quantitative evaluations, as well as extensions to other scenarios.
With the physical Higgs mass the Standard Model symmetry restoration phase transition is a smooth cross-over. We study the thermodynamics of the cross-over using numerical lattice Monte Carlo simulations of an effective SU(2) X U(1) gauge + Higgs the ory, significantly improving on previously published results. We measure the Higgs field expectation value, thermodynamic quantities like pressure, energy density, speed of sound and heat capacity, and screening masses associated with the Higgs and Z fields. While the cross-over is smooth, it is very well defined with a width of only approximately 5 GeV. We measure the cross-over temperature from the maximum of the susceptibility of the Higgs condensate, with the result $T_c = 159.5 pm 1.5$ GeV. Outside of the narrow cross-over region the perturbative results agree well with non-perturbative ones.
119 - V.A.Bednyakov 2007
The mass-generation mechanism is the most urgent problem of the modern particle physics. The discovery and study of the Higgs boson with the Large Hadron Collider at CERN are the highest priority steps to solve the problem. In this paper, the Standar d Model Higgs mechanism of the elementary particle mass generation is reviewed with pedagogical details. The discussion of the Higgs quadric self-coupling lambda parameter and the bounds to the Higgs boson mass are presented. In particular, the unitarity, triviality, and stability constraints on the Higgs boson mass are discussed. The generation of the finite value for the lambda parameter due to quantum corrections via effective potential is illustrated. Some simple predictions for the top quark and the Higgs boson masses are given when both the top Yukawa coupling and the Higgs self-coupling lambda are equal to 1.
62 - Lucas Johns , Seth Koren 2020
The anomalous 21 cm absorption feature reported by EDGES has galvanized the study of scenarios in which dark matter (DM) siphons off thermal energy from the Standard Model (SM) gas. In a departure from the much-discussed models that achieve cooling b y DM scattering directly with SM particles, we show that the same end can be achieved through neutral atomic hydrogen $H$ mixing with a degenerate dark sector state $H$. An analysis of in-medium $H$-$H$ oscillations reveals viable parameter space for generic types of $H$-DM interactions to provide the requisite cooling. This strategy stands in stark contrast to other proposals in many respects, including its cosmological dynamics, model building implications, and complementary observational signatures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا