ترغب بنشر مسار تعليمي؟ اضغط هنا

Minimal signatures of the Standard Model in non-Gaussianities

110   0   0.0 ( 0 )
 نشر من قبل Junwu Huang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that the leading coupling between a shift symmetric inflaton and the Standard Model fermions leads to an induced electroweak symmetry breaking due to particle production during inflation, and as a result, a unique oscillating feature in non-Gaussianities. In this one parameter model, the enhanced production of Standard Model fermions dynamically generates a new electroweak symmetry breaking minimum, where the Higgs field classically rolls into. The production of fermions stops when the Higgs expectation value and hence the fermion masses become too large, suppressing fermion production. The balance between the above-mentioned effects gives the Standard Model fermions masses that are uniquely determined by their couplings to the inflaton. In particular, the heaviest Standard Model fermion, the top quark, can produce a distinct cosmological collider physics signature characterised by a one-to-one relation between amplitude and frequency of the oscillating signal, which is observable at future 21-cm surveys.

قيم البحث

اقرأ أيضاً

We study the cosmological collider phenomenology of neutrinos in an effective field theory. The mass spectrum of neutrinos and their characteristic oscillatory signatures in the squeezed limit bispectrum are computed. Both dS-covariant and slow-roll corrections are considered, so is the scenario of electroweak symmetry breaking during inflation. Interestingly, we show that the slow-roll background of the inflaton provides a chemical potential for the neutrino production. The chemical potential greatly amplifies the oscillatory signal and makes the signal observably large for heavy neutrinos without the need of fine tuning.
86 - Xian Gao 2014
We compute the level of non-gaussianities produced by a cosmological bouncing phase in the minimal non-singular setup that lies within the context of General Relativity when the matter content consists of a simple scalar field with a standard kinetic term. Such a bouncing phase is obtained by requiring that the spatial sections of the background spacetime be positively curved. We restrict attention to the close vicinity of the bounce by Taylor expanding the scale factor, the scalar field and its potential in powers of the conformal time around the bounce. We find that possibly large non-gaussianities are generically produced at the bounce itself and also discuss which shapes of non-gaussianities are mostly likely to be produced.
We demonstrate that light spectator fields can source sizeable CMB anisotropies through modulated reheating even in the absence of direct couplings to the inflaton. The effect arises when the phase space of the inflaton decay is modulated by the spec tator which generates masses for the decay products. We call the mechanism textit{indirect modulation} and show that it can source perturbations even four orders of magnitude larger than the observed. Importantly, the indirect mechanism is present in the Standard Model extended with right-handed neutrinos. For a minimally coupled Higgs boson this leads to a novel lower bound on the quartic coupling and constrains the neutrino Yukawas below unity.
128 - S. Baek , P. Ko , Wan-Il Park 2013
Assuming dark matter is absolutely stable due to unbroken dark gauge symmetry and singlet operators are portals to the dark sector, we present a simple extension of the standard seesaw model that can accommodate all the cosmological observations as w ell as terrestrial experiments available as of now, including leptogenesis, extra dark radiation of $sim 0.08$ (resulting in $N_{rm eff} = 3.130$ the effective number of neutrino species), Higgs inflation, small and large scale structure formation, and current relic density of scalar DM ($X$). The Higgs signal strength is equal to one as in the SM for unbroken $U(1)_X$ case with a scalar dark matter, but it could be less than one independent of decay channels if the dark matter is a dark sector fermion or if $U(1)_X$ is spontaneously broken, because of a mixing with a new neutral scalar boson in the models.
The next-to-minimal supersymmetric standard model predicts the formation of domain walls due to the spontaneous breaking of the discrete $Z_3$-symmetry at the electroweak phase transition, and they collapse before the epoch of big bang nucleosynthesi s if there exists a small bias term in the potential which explicitly breaks the discrete symmetry. Signatures of gravitational waves produced from these unstable domain walls are estimated and their parameter dependence is investigated. It is shown that the amplitude of gravitational waves becomes generically large in the decoupling limit, and that their frequency is low enough to be probed in future pulsar timing observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا