ترغب بنشر مسار تعليمي؟ اضغط هنا

ARES III: Unveiling the Two Faces of KELT-7 b with HST WFC3

274   0   0.0 ( 0 )
 نشر من قبل Billy Edwards
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the analysis of the hot-Jupiter KELT-7b using transmission and emission spectroscopy from the Hubble Space Telescope (HST), both taken with the Wide Field Camera 3 (WFC3). Our study uncovers a rich transmission spectrum which is consistent with a cloud-free atmosphere and suggests the presence of H2O and H-. In contrast, the extracted emission spectrum does not contain strong absorption features and, although it is not consistent with a simple blackbody, it can be explained by a varying temperature-pressure profile, collision induced absorption (CIA) and H-. KELT-7 b had also been studied with other space-based instruments and we explore the effects of introducing these additional datasets. Further observations with Hubble, or the next generation of space-based telescopes, are needed to allow for the optical opacity source in transmission to be confirmed and for molecular features to be disentangled in emission.



قيم البحث

اقرأ أيضاً

We present a study on the spatially scanned spectroscopic observations of the transit of GJ 1132 b, a warm ($sim$500 K) Super-Earth (1.13 R$_oplus$) that was obtained with the G141 grism (1.125 - 1.650 $mu$m) of the Wide Field Camera 3 (WFC3) onboard the Hubble Space Telescope. We used the publicly available Iraclis pipeline to extract the planetary transmission spectra from the five visits and produce a precise transmission spectrum. We analysed the spectrum using the TauREx3 atmospheric retrieval code with which we show that the measurements do not contain molecular signatures in the investigated wavelength range and are best-fit with a flat-line model. Our results suggest that the planet does not have a clear primordial, hydrogen-dominated atmosphere. Instead, GJ 1132 b could have a cloudy hydrogen-dominated envelope, a very enriched secondary atmosphere, be airless, or have a tenuous atmosphere that has not been detected. Due to the narrow wavelength coverage of WFC3, these scenarios cannot be distinguished yet but the James Webb Space Telescope may be capable of detecting atmospheric features, although several observations may be required to provide useful constraints.
We present an atmospheric characterization study of two medium sized planets bracketing the radius of Neptune: HD 106315 c (R$_{rm{P}}$=4.98 $pm$ 0.23 R$_{oplus}$) and HD 3167 c (R$_{rm{P}}$=2.740$_{-0.100}^{+0.106}$ R$_{oplus}$). We analyse spatiall y scanned spectroscopic observations obtained with the G141 grism (1.125 - 1.650 $mu$m) of the Wide Field Camera 3 (WFC3) onboard the Hubble Space Telescope. We use the publicly available Iraclis pipeline and TauREx3 atmospheric retrieval code and we detect water vapor in the atmosphere of both planets with an abundance of $log_{10}[mathrm{H_2O}]=-2.1^{+0.7}_{-1.3}$ ($sim$5.68$sigma$) and $log_{10}[mathrm{H_2O}]=-4.1^{+0.9}_{-0.9}$ ($sim$3.17$sigma$) for HD 106315 c and HD 3167 c, respectively. The transmission spectrum of HD 106315 c shows also a possible evidence of ammonia absorption ($log_{10}[mathrm {NH_3}]=-4.3^{+0.7}_{-2.0}$, $sim$1.97$sigma$ -even if it is not significant-), whilst carbon dioxide absorption features may be present in the atmosphere of HD 3167 c in the $sim$1.1-1.6~$mu$m wavelength range ($log_{10}[mathrm{CO_{2}}]= -2.4^{+0.7}_{-1.0}$, $sim$3.28$sigma$). However the CO$_2$ detection appears significant, it must be considered carefully and put into perspective. Indeed, CO$_2$ presence is not explained by 1D equilibrium chemistry models, and it could be due to possible systematics. The additional contribution of clouds, CO and CH$_4$ are discussed. HD 106315 c and HD 3167 c will be interesting targets for upcoming telescopes such as the James Webb Space Telescope (JWST) and the Atmospheric Remote-Sensing Infrared Exoplanet Large-Survey (Ariel).
This paper presents the atmospheric characterisation of three large, gaseous planets: WASP-127b, WASP-79b and WASP-62b. We analysed spectroscopic data obtained with the G141 grism (1.088 - 1.68 $mu$m) of the Wide Field Camera 3 (WFC3) onboard the Hub ble Space Telescope (HST) using the Iraclis pipeline and the TauREx3 retrieval code, both of which are publicly available. For WASP-127 b, which is the least dense planet discovered so far and is located in the short-period Neptune desert, our retrieval results found strong water absorption corresponding to an abundance of log(H$_2$O) = -2.71$^{+0.78}_{-1.05}$, and absorption compatible with an iron hydride abundance of log(FeH)=$-5.25^{+0.88}_{-1.10}$, with an extended cloudy atmosphere. We also detected water vapour in the atmospheres of WASP-79 b and WASP-62 b, with best-fit models indicating the presence of iron hydride, too. We used the Atmospheric Detectability Index (ADI) as well as Bayesian log evidence to quantify the strength of the detection and compared our results to the hot Jupiter population study by Tsiaras et al. 2018. While all the planets studied here are suitable targets for characterisation with upcoming facilities such as the James Webb Space Telescope (JWST) and Ariel, WASP-127 b is of particular interest due to its low density, and a thorough atmospheric study would develop our understanding of planet formation and migration.
We report here the analysis of the near-infrared transit spectrum of the hot-Jupiter HAT-P-32b which was recorded with the Wide Field Camera 3 (WFC3) on-board the Hubble Space Telescope (HST). HAT-P-32b is one of the most inflated exoplanets discover ed, making it an excellent candidate for transit spectroscopic measurements. To obtain the transit spectrum, we have adopted different analysis methods, both parametric and non parametric (Independent Component Analysis, ICA), and compared the results. The final spectra are all consistent within 0.5$sigma$. The uncertainties obtained with ICA are larger than those obtained with the parametric method by a factor $sim$1.6 - 1.8. This difference is the trade-off for higher objectivity due to the lack of any assumption about the instrument systematics compared to the parametric approach. The ICA error-bars are therefore worst-case estimates. To interpret the spectrum of HAT-P-32b, we used T-Rex, our fully Bayesian spectral retrieval code. As for other hot-Jupiters, the results are consistent with the presence of water vapor ($log{text{H}_2text{O}} = -3.45_{-1.65}^{+1.83}$), clouds (top pressure between 5.16 and 1.73 bar). Spectroscopic data over a broader wavelength range will be needed to de-correlate the mixing ratio of water vapor from clouds and identify other possible molecular species in the atmosphere of HAT-P-32b.
We quantified and calibrated the metallicity and temperature sensitivities of colors derived from nine Wide Field Camera 3 (WFC3) filters aboard the Hubble Space Telescope using Dartmouth isochrones and Kurucz atmospheres models. The theoretical isoc hrone colors were tested and calibrated against observations of five well studied galactic clusters: M92, NGC 6752, NGC 104, NGC 5927, and NGC 6791, all of which have spectroscopically determined metallicities spanning -2.30 < [Fe/H] < +0.4. We found empirical corrections to the Dartmouth isochrone grid for each of the following color magnitude diagrams (CMD) (F555W--F814W, F814W), (F336W-F555W, F814W), (F390M-F555W, F814W) and (F390W-F555W, F814W). Using the empirical corrections we tested the accuracy and spread of the photometric metallicities assigned from CMDs and color-color diagrams (which are necessary to break the age-metallicity degeneracy). Testing three color-color diagrams [(F336W-F555W),(F390M-F555W),(F390W-F555W), vs (F555W-F814W)], we found the colors (F390M-F555W) and (F390W-F555W), to be the best suited to measure photometric metallicities. The color (F390W-F555W) requires much less integration time, but generally produces wider metallicity distributions, and, at very-low metallicity, the MDF from (F390W-F555W) is ~60% wider than that from (F390M-F555W). Using the calibrated isochrones we recovered the overall cluster metallicity to within ~0.1 dex in [Fe/H] when using CMDs (i.e. when the distance, reddening and ages are approximately known). The measured metallicity distribution function (MDF) from color-color diagrams show this method measures metallicities of stellar clusters of unknown age and metallicity with an accuracy of ~0.2 - 0.5 dex using F336W--F555W, ~0.15 - 0.25 dex using F390M-F555W, and ~0.2 - 0.4 dex with F390W-F555W, with the larger uncertainty pertaining to the lowest metallicity range.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا