ﻻ يوجد ملخص باللغة العربية
We demonstrate that SrTiO$_3$ can be a platform for observing the bulk odd-frequency superconducting state owing to the multiorbital/multiband nature. We consider a three-orbital tight-binding model for SrTiO$_3$ in the vicinity of a ferroelectric critical point. Assuming an intraorbital spin-singlet $s$-wave superconducting order parameter, it is shown that the odd-frequency pair correlations are generated due to the intrinsic LS coupling which leads to the local orbital mixing. Furthermore, we show the existence of additional odd-frequency pair correlations in the ferroelectric phase, which is induced by an odd-parity orbital hybridization term proportional to the ferroelectric order parameter. We also perform a group theoretical classification of the odd-frequency pair amplitudes based on the fermionic and space group symmetries of the system. The classification table enables us to predict dominant components of the odd-frequency pair correlations based on the symmetry of the normal state Hamiltonian that we take into account. Furthermore, we show that experimental signatures of the odd-parity orbital hybridization, which is an essential ingredient for the ferroelectricity-induced odd-frequency pair correlations, can be observed in the spectral functions and density of states.
At an interface between a topological insulator (TI) and a conventional superconductor (SC), superconductivity has been predicted to change dramatically and exhibit novel correlations. In particular, the induced superconductivity by an $s$-wave SC in
Advances in complex oxide heteroepitaxy have highlighted the enormous potential of utilizing strain engineering via lattice mismatch to control ferroelectricity in thin-film heterostructures. This approach, however, lacks the ability to produce large
We study the effect of the Fermi surface anisotropy on the odd-frequency spin-triplet pairing component of the induced pair potential. We consider a superconductor/ ferromagnetic insulator (S/FI) hybrid structure formed on the 3D topological insulato
We formulate a general framework for addressing both odd- and even-frequency superconductivity in Dirac semimetals and demonstrate that the odd-frequency or the Berezinskii pairing can naturally appear in these materials because of the chirality degr
SrTiO$_3$ is an incipient ferroelectric on the verge of a polar instability, which is avoided at low temperatures by quantum fluctuations. Within this unusual quantum paraelectric phase, superconductivity persists despite extremely dilute carrier den