ﻻ يوجد ملخص باللغة العربية
We study the effect of the Fermi surface anisotropy on the odd-frequency spin-triplet pairing component of the induced pair potential. We consider a superconductor/ ferromagnetic insulator (S/FI) hybrid structure formed on the 3D topological insulator (TI) surface. In this case three ingredients insure the possibility of the odd-frequency pairing: 1) the topological surface states, 2) the induced pair potential, and 3) the magnetic moment of a nearby ferromagnetic insulator. We take into account the strong anisotropy of the Dirac cone in topological insulators when the chemical potential lies well above the Dirac cone and its constant energy contour has a snowflake shape. Within this model, we propose that the S/FI boundary should be properly aligned with respect to the snowflake constant energy contour to have an odd-frequency symmetry of the corresponding pairing component and to insure the Majorana bound state at the S/FI boundary. For arbitrary orientation of the boundary the Majorana bound state is absent. This provides a selection rule to the realization of Majorana modes in S/FI hybrid structures, formed on the topological insulator surface.
At an interface between a topological insulator (TI) and a conventional superconductor (SC), superconductivity has been predicted to change dramatically and exhibit novel correlations. In particular, the induced superconductivity by an $s$-wave SC in
We propose theoretically a new effect, i.e. nonlinear planar Nernst effect (NPNE), in nonmagnetic topological insulator (TI) Bi2Te3 in the presence of an in-plane magnetic field. We find that the Nernst current scales quadratically with temperature g
We demonstrate that SrTiO$_3$ can be a platform for observing the bulk odd-frequency superconducting state owing to the multiorbital/multiband nature. We consider a three-orbital tight-binding model for SrTiO$_3$ in the vicinity of a ferroelectric cr
The existence of topological superconductors preserving time-reversal symmetry was recently predicted, and they are expected to provide a solid-state realization of itinerant massless Majorana fermions and a route to topological quantum computation.
We present an in-depth classification of the topological phases and Majorana fermion (MF) excitations that arise from the bulk interplay between unconventional multiband spin-singlet superconductivity and various magnetic textures. We focus on magnet