ترغب بنشر مسار تعليمي؟ اضغط هنا

A resource efficient approach for quantum and classical simulations of gauge theories in particle physics

88   0   0.0 ( 0 )
 نشر من قبل Jan Friedrich Haase
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Gauge theories establish the standard model of particle physics, and lattice gauge theory (LGT) calculations employing Markov Chain Monte Carlo (MCMC) methods have been pivotal in our understanding of fundamental interactions. The present limitations of MCMC techniques may be overcome by Hamiltonian-based simulations on classical or quantum devices, which further provide the potential to address questions that lay beyond the capabilities of the current approaches. However, for continuous gauge groups, Hamiltonian-based formulations involve infinite-dimensional gauge degrees of freedom that can solely be handled by truncation. Current truncation schemes require dramatically increasing computational resources at small values of the bare couplings, where magnetic field effects become important. Such limitation precludes one from `taking the continuous limit while working with finite resources. To overcome this limitation, we provide a resource-efficient protocol to simulate LGTs with continuous gauge groups in the Hamiltonian formulation. Our new method allows for calculations at arbitrary values of the bare coupling and lattice spacing. The approach consists of the combination of a Hilbert space truncation with a regularization of the gauge group, which permits an efficient description of the magnetically-dominated regime. We focus here on Abelian gauge theories and use $2+1$ dimensional quantum electrodynamics as a benchmark example to demonstrate this efficient framework to achieve the continuum limit in LGTs. This possibility is a key requirement to make quantitative predictions at the field theory level and offers the long-term perspective to utilise quantum simulations to compute physically meaningful quantities in regimes that are precluded to quantum Monte Carlo.



قيم البحث

اقرأ أيضاً

Gauge field theories play a central role in modern physics and are at the heart of the Standard Model of elementary particles and interactions. Despite significant progress in applying classical computational techniques to simulate gauge theories, it has remained a challenging task to compute the real-time dynamics of systems described by gauge theories. An exciting possibility that has been explored in recent years is the use of highly-controlled quantum systems to simulate, in an analog fashion, properties of a target system whose dynamics are difficult to compute. Engineered atom-laser interactions in a linear crystal of trapped ions offer a wide range of possibilities for quantum simulations of complex physical systems. Here, we devise practical proposals for analog simulation of simple lattice gauge theories whose dynamics can be mapped onto spin-spin interactions in any dimension. These include 1+1D quantum electrodynamics, 2+1D Abelian Chern-Simons theory coupled to fermions, and 2+1D pure Z2 gauge theory. The scheme proposed, along with the optimization protocol applied, will have applications beyond the examples presented in this work, and will enable scalable analog quantum simulation of Heisenberg spin models in any number of dimensions and with arbitrary interaction strengths.
We describe the simulation of dihedral gauge theories on digital quantum computers. The nonabelian discrete gauge group $D_N$ -- the dihedral group -- serves as an approximation to $U(1)timesmathbb{Z}_2$ lattice gauge theory. In order to carry out su ch a lattice simulation, we detail the construction of efficient quantum circuits to realize basic primitives including the nonabelian Fourier transform over $D_N$, the trace operation, and the group multiplication and inversion operations. For each case the required quantum resources scale linearly or as low-degree polynomials in $n=log N$. We experimentally benchmark our gates on the Rigetti Aspen-9 quantum processor for the case of $D_4$. The fidelity of all $D_4$ gates was found to exceed $80%$.
Gauge theories are the most successful theories for describing nature at its fundamental level, but obtaining analytical or numerical solutions often remains a challenge. We propose an experimental quantum simulation scheme to study ground state prop erties in two-dimensional quantum electrodynamics (2D QED) using existing quantum technology. The proposal builds on a formulation of lattice gauge theories as effective spin models in arXiv:2006.14160, which reduces the number of qubits needed by eliminating redundant degrees of freedom and by using an efficient truncation scheme for the gauge fields. The latter endows our proposal with the perspective to take a well-controlled continuum limit. Our protocols allow in principle scaling up to large lattices and offer the perspective to connect the lattice simulation to low energy observable quantities, e.g. the hadron spectrum, in the continuum theory. By including both dynamical matter and a non-minimal gauge field truncation, we provide the novel opportunity to observe 2D effects on present-day quantum hardware. More specifically, we present two Variational Quantum Eigensolver (VQE) based protocols for the study of magnetic field effects, and for taking an important first step towards computing the running coupling of QED. For both instances, we include variational quantum circuits for qubit-based hardware, which we explicitly apply to trapped ion quantum computers. We simulate the proposed VQE experiments classically to calculate the required measurement budget under realistic conditions. While this feasibility analysis is done for trapped ions, our approach can be easily adapted to other platforms. The techniques presented here, combined with advancements in quantum hardware pave the way for reaching beyond the capabilities of classical simulations by extending our framework to include fermionic potentials or topological terms.
We study a lattice gauge theory in Wilsons Hamiltonian formalism. In view of the realization of a quantum simulator for QED in one dimension, we introduce an Abelian model with a discrete gauge symmetry $mathbb{Z}_n$, approximating the $U(1)$ theory for large $n$. We analyze the role of the finiteness of the gauge fields and the properties of physical states, that satisfy a generalized Gausss law. We finally discuss a possible implementation strategy, that involves an effective dynamics in physical space.
Quantum-enhanced computing methods are promising candidates to solve currently intractable problems. We consider here a variational quantum eigensolver (VQE), that delegates costly state preparations and measurements to quantum hardware, while classi cal optimization techniques guide the quantum hardware to create a desired target state. In this work, we propose a bosonic VQE using superconducting microwave cavities, overcoming the typical restriction of a small Hilbert space when the VQE is qubit based. The considered platform allows for strong nonlinearities between photon modes, which are highly customisable and can be tuned in situ, i.e. during running experiments. Our proposal hence allows for the realization of a wide range of bosonic ansatz states, and is therefore especially useful when simulating models involving degrees of freedom that cannot be simply mapped to qubits, such as gauge theories, that include components which require infinite-dimensional Hilbert spaces. We thus propose to experimentally apply this bosonic VQE to the U(1) Higgs model including a topological term, which in general introduces a sign problem in the model, making it intractable with conventional Monte Carlo methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا