ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast Learning of Graph Neural Networks with Guaranteed Generalizability: One-hidden-layer Case

186   0   0.0 ( 0 )
 نشر من قبل Shuai Zhang
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Although graph neural networks (GNNs) have made great progress recently on learning from graph-structured data in practice, their theoretical guarantee on generalizability remains elusive in the literature. In this paper, we provide a theoretically-grounded generalizability analysis of GNNs with one hidden layer for both regression and binary classification problems. Under the assumption that there exists a ground-truth GNN model (with zero generalization error), the objective of GNN learning is to estimate the ground-truth GNN parameters from the training data. To achieve this objective, we propose a learning algorithm that is built on tensor initialization and accelerated gradient descent. We then show that the proposed learning algorithm converges to the ground-truth GNN model for the regression problem, and to a model sufficiently close to the ground-truth for the binary classification problem. Moreover, for both cases, the convergence rate of the proposed learning algorithm is proven to be linear and faster than the vanilla gradient descent algorithm. We further explore the relationship between the sample complexity of GNNs and their underlying graph properties. Lastly, we provide numerical experiments to demonstrate the validity of our analysis and the effectiveness of the proposed learning algorithm for GNNs.



قيم البحث

اقرأ أيضاً

316 - Simon S. Du , Surbhi Goel 2018
We propose a new algorithm to learn a one-hidden-layer convolutional neural network where both the convolutional weights and the outputs weights are parameters to be learned. Our algorithm works for a general class of (potentially overlapping) patche s, including commonly used structures for computer vision tasks. Our algorithm draws ideas from (1) isotonic regression for learning neural networks and (2) landscape analysis of non-convex matrix factorization problems. We believe these findings may inspire further development in designing provable algorithms for learning neural networks and other complex models.
Transfer learning has emerged as a powerful technique for improving the performance of machine learning models on new domains where labeled training data may be scarce. In this approach a model trained for a source task, where plenty of labeled train ing data is available, is used as a starting point for training a model on a related target task with only few labeled training data. Despite recent empirical success of transfer learning approaches, the benefits and fundamental limits of transfer learning are poorly understood. In this paper we develop a statistical minimax framework to characterize the fundamental limits of transfer learning in the context of regression with linear and one-hidden layer neural network models. Specifically, we derive a lower-bound for the target generalization error achievable by any algorithm as a function of the number of labeled source and target data as well as appropriate notions of similarity between the source and target tasks. Our lower bound provides new insights into the benefits and limitations of transfer learning. We further corroborate our theoretical finding with various experiments.
Graph neural networks (GNNs) have been successfully employed in a myriad of applications involving graph-structured data. Theoretical findings establish that GNNs use nonlinear activation functions to create low-eigenvalue frequency content that can be processed in a stable manner by subsequent graph convolutional filters. However, the exact shape of the frequency content created by nonlinear functions is not known, and thus, it cannot be learned nor controlled. In this work, node-variant graph filters (NVGFs) are shown to be capable of creating frequency content and are thus used in lieu of nonlinear activation functions. This results in a novel GNN architecture that, although linear, is capable of creating frequency content as well. Furthermore, this new frequency content can be either designed or learned from data. In this way, the role of frequency creation is separated from the nonlinear nature of traditional GNNs. Extensive simulations are carried out to differentiate the contributions of frequency creation from those of the nonlinearity.
Graph neural networks (GNNs) are processing architectures that exploit graph structural information to model representations from network data. Despite their success, GNNs suffer from sub-optimal generalization performance given limited training data , referred to as over-fitting. This paper proposes Topology Adaptive Edge Dropping (TADropEdge) method as an adaptive data augmentation technique to improve generalization performance and learn robust GNN models. We start by explicitly analyzing how random edge dropping increases the data diversity during training, while indicating i.i.d. edge dropping does not account for graph structural information and could result in noisy augmented data degrading performance. To overcome this issue, we consider graph connectivity as the key property that captures graph topology. TADropEdge incorporates this factor into random edge dropping such that the edge-dropped subgraphs maintain similar topology as the underlying graph, yielding more satisfactory data augmentation. In particular, TADropEdge first leverages the graph spectrum to assign proper weights to graph edges, which represent their criticality for establishing the graph connectivity. It then normalizes the edge weights and drops graph edges adaptively based on their normalized weights. Besides improving generalization performance, TADropEdge reduces variance for efficient training and can be applied as a generic method modular to different GNN models. Intensive experiments on real-life and synthetic datasets corroborate theory and verify the effectiveness of the proposed method.
We study the complexity of training neural network models with one hidden nonlinear activation layer and an output weighted sum layer. We analyze Gradient Descent applied to learning a bounded target function on $n$ real-valued inputs. We give an agn ostic learning guarantee for GD: starting from a randomly initialized network, it converges in mean squared loss to the minimum error (in $2$-norm) of the best approximation of the target function using a polynomial of degree at most $k$. Moreover, for any $k$, the size of the network and number of iterations needed are both bounded by $n^{O(k)}log(1/epsilon)$. In particular, this applies to training networks of unbiased sigmoids and ReLUs. We also rigorously explain the empirical finding that gradient descent discovers lower frequency Fourier components before higher frequency components. We complement this result with nearly matching lower bounds in the Statistical Query model. GD fits well in the SQ framework since each training step is determined by an expectation over the input distribution. We show that any SQ algorithm that achieves significant improvement over a constant function with queries of tolerance some inverse polynomial in the input dimensionality $n$ must use $n^{Omega(k)}$ queries even when the target functions are restricted to a set of $n^{O(k)}$ degree-$k$ polynomials, and the input distribution is uniform over the unit sphere; for this class the information-theoretic lower bound is only $Theta(k log n)$. Our approach for both parts is based on spherical harmonics. We view gradient descent as an operator on the space of functions, and study its dynamics. An essential tool is the Funk-Hecke theorem, which explains the eigenfunctions of this operator in the case of the mean squared loss.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا